Check it out: New Studies in the Region Discuss Wildfires in the Future and How Fuel Treatments May Affect Them

By Sonia A. Hall

Fire burning up a shrub steppe slope, with a conifer tree in the foreground

The lightning-sparked Carlton Complex Fire in July was the largest in the state’s recorded history, burning 256,108 acres and destroying 322 residences. Photo and caption: Washington Department of Natural Resources, on Flickr, under CC BY-NC-ND 2.0.

Pacific Northwesterners, especially those of us living and breathing in the inland Northwest, expect wildfires every summer. It’s not about if, but about when, where, and how severe they will be, both in forest and rangeland landscapes. As with many other aspects of natural resource management, climate change continues to add a layer of complexity and uncertainty both in terms of the patterns of fire expected in the future, and in terms of the response of land managers. The USDA’s Northwest Climate Hub’s April 2020 newsletter highlighted the findings of two scientific articles that are addressing questions around future patterns in wildfires and what can be done to prepare. Continue reading

How Can Long-Term Water Storage Management Mitigate Problems in an Era of Water Resource Deficits?

Mengqi Zhao, Ph.D. Candidate, Department of Civil and Environmental Engineering, Washington State University

Set of containment structures filled with water, an aquifer recharge area

Figure 1. Managed Aquifer Recharge, like this example for the Merti aquifer shared between Kenya and Somalia, can help provide additional water in periods of water scarcity. The photo is from the Intergovernmental Authority on Development. (IGAD).

The 2015 drought caused more than $700 million in economic losses across Washington State. Even with current water storage management, both in places where rivers, lakes, and reservoirs generally provide sufficient water and in places where aquifers are the most stable water resource across seasons, extreme drought still impacted our economy. While droughts may impact different places with varying intensity, the risk of long-term water scarcity is greater when aquifers provide water today at the expense of tomorrow’s supply. As the region faces population increases and increasing competition for water resources to provide environmental value and economic value, the risk may increase further. So what water management options can help us mitigate the impacts of drought in the future?

In our region, we are experienced in using surface reservoirs as buffers between the naturally variable water cycle and the relatively more consistent agricultural water demand. The less visible buffer underground has often been ignored. Yet interest is growing, as aquifers may also be a useful reservoir over the long term, if managed sustainably. Our research team is evaluating managed aquifer recharge (MAR), an approach that stores water in the aquifer during the snowmelt season, allowing users to pump it for irrigation during periods of water scarcity (Figure 1). We have been asking questions about how to recharge aquifer systems to optimally achieve both short-term usage and long-term water supply sustainability. Imagine that the amount of water recharged into the aquifer becomes your future available MAR entitlement to pump up when needed. The more water that recharges the aquifer, the more effective the MAR will be in mitigating drought impacts. We are interested in answering specific questions, such as ‘What timing of recharge and infiltration area would have been needed for managed aquifer recharge to provide an effective buffer against the 2015 drought?’ or ‘How effective is managed aquifer recharge for maintaining sustainable water supply during single-year drought or even multi-year droughts?’ Continue reading

Check it out: Protecting Water from the Impacts of Wildfire… Are There Other Advantages?

By Sonia A. Hall

Firefighter looking back to a surface fire under a pine canopy, surrounded by smoke.

A recent report describes how wildfire risk reduction projects can have rippling economic effects across a community. Photo: Gila National Forest under CC BY-SA 2.0.

Being involved in FireEarth, a large research project exploring what makes communities more or less vulnerable to the impacts of wildfire and its cascading consequences, I am really interested in the complexity of impacts and, just as important, what communities, agencies, and other organizations can do to reduce their vulnerabilities. It is not unusual for the initial hypothesis associated with these questions to be that wildfire risk reduction projects in the watershed upstream and around a community have costs associated with them, and we need to understand those costs—as well as the targeted risk reduction benefits that such projects provide—to make sound investment decisions. Now recent work published by the US Geological Survey and partners explores other advantages of such projects: Continue reading

An Integrated View of Water Vulnerability Across the Northwest

By Paris Edwards, USDA Northwest Climate Hub

Water systems across the Northwest sustain crops, livestock, ecosystems, people and power production. These highly managed, interconnected networks of rivers, reservoirs, canals, and pipelines are economic mainstays for the region, and play a foundational role in food and energy security and sustaining natural resource livelihoods.

Top photo shows a large city with a snowcapped mountain in the background. The bottom picute shows rolling hills, with stripes of brown earth or green crops, with a town in the middle.

Figure 1. Water vulnerability depends on a combination of hydrology and social resilience. Densely populated subbasins (top photo) face contrasting challenges to sparsely populated and highly agricultural subbasins (bottom photo). Differences may include precipitation variability and dominance of low-elevation snowpack, economic dependence on natural resources, and poverty rates. Photos: Top – Portland, Oregon, Wikipedia user Truflip99 under CC BY-SA 4.0; Bottom – A town in the Palouse, Washington, Lynn Suckow under CC BY-SA 2.0.

However, climate change has begun to challenge water resources by increasing temperatures, decreasing snowpack, and altering the timing and amount of available water (Regonda et al. 2005). Current water management systems are designed around historical norms and trends that are rapidly becoming outdated, due to increasing climate variability and uncertainty about future resources. As a region, we now have to reconsider how best to plan around and adapt to expected change in order to reduce and avoid negative consequences to the overall food-energy-water system and to community well-being. But where is such adaptation planning particularly urgent? We synthesized data from across the Northwest to answer this question. Continue reading

Check it out: Using the Climate Toolbox to Explain This Winter’s Snowpack Dynamics

By Sonia A. Hall

Skier on a slope with deep powder, and trees on either side

Snowpack in the Cascade Mountains contributed to the somewhat unusual patterns we have seen in this winter’s snowpack. Photo: Peter Stevens under CC BY 2.0.

You may have seen announcements or other Check It Out articles we have posted on AgClimate.net that speak about the Climate Toolbox. This online resource is a collection of tools for addressing questions relating to agriculture, climate, fire conditions, and water developed at the University of Idaho. Oriana Chegwidden, a research scientist and PhD student in Civil and Environmental Engineering at the University of Washington, has recently written an article in the Climate CIRCulator that showcases how you might use the wealth of climate data that the Climate Toolbox synthesizes. She describes the somewhat unusual patterns we have seen in this winter’s snowpack, and what we might see through the rest of the season, running through a few of the Climate Toolbox maps as examples. In this way her article both gives detail and depth on this year’s snowpack dynamics, and provides a neat example of how this tool can be used. So check it out!

Check it Out: Can Biochar Be Used for Carbon Dioxide Drawdown in Washington State?

By Karen Hills

Bag full of biochar, a black gravelly material

Figure 1. Biochar has the potential to improve agricultural soils and sequester carbon. Source: USDAgov, licensed under CC PDM 1.0.

This is part of a series highlighting work by Washington State University (WSU) researchers through the Waste to Fuels Technology Partnership between the Department of Ecology and WSU during the 2017-2019 biennium.

In a recent study, Jim Amonette at the Pacific Northwest National Laboratory and Washington State University Center for Sustaining Agriculture and Natural Resources developed an improved method to estimate the technical potential for biochar (Figure 1)—made from forestry residues and waste wood (Figure 2) and applied to agricultural soils in Washington State—to store carbon, drawing down atmospheric carbon (C) and contributing to mitigating climate change. Amonette selected twenty-six counties in Washington State for application of this improved method (Figure 3). For each county, Amonette developed seven biomass feedstock and biochar process scenarios including one for waste wood harvested from municipal solid waste alone, and six for waste wood combined with forestry residues from timber harvesting operations. The research generated results for each of the 26 counties. Continue reading

Greenhouse Production of Vegetables: Implications for the Region

By Fidel Maureira, Ph.D. Candidate, Department of Biological Systems Engineering, Washington State University

Dense rows of pepper plants in a greenhouse, on either side of a set of rails

Figure 1. Greenhouse production facility for bell peppers. Photo: Fidel Maureira.

Greenhouse agricultural production currently accounts for 1 to 2% of the agricultural production in the Unites States, but is rapidly growing. The value of this greenhouse production has increased 44% in the last years, and the number of operators has gone up by 71%. Large retailers have a significant interest in this technology, given the benefits of consistency in quality, flavor, and production volume, the potential for year-round supply, consumer preferences for local supply, and the perception that greenhouse production can be more sustainable than traditional production, with more efficient use of resources. New, larger, commercial operations tend to be concentrated around bigger cities to satisfy those local needs. This trend is true in other parts of the world as well, including neighboring Canada. What would greenhouses mean in the Pacific Northwest, if they are broadly adopted?

Continue reading

Sequestering Carbon in Cross-Laminated Timber

By Chris Schnepf

Panel of five layers of boards glued together perpendicular to each other.

Cross-laminated timber panels are made by gluing together three or more layers of boards perpendicular to each other. Photo: Chris Schnepf.

Most of the articles on AgClimate.net focus on adaptation; that is, how we manage fields, forests, and rangelands to adapt to anticipated changes in climate. But there is another side to dealing with climate change—how do we reduce the amount of carbon dioxide in the atmosphere? These efforts are collectively referred to as “mitigation”.

Most of our mitigation focus has been on practices to reduce emissions from cars, tractors, planes, manufacturing, livestock, etc… anything that puts greenhouse gases into the atmosphere. But another part of the mitigation discussion focuses on techniques to place carbon where it can be stored long term and kept out of the atmosphere. In forestry and agriculture there is a lot of research underway on practices that sequester more carbon, from changing agricultural practices, using biochar as a soil amendment in agriculture, to managing forests in ways that retain more carbon, within fire safety limitations.

One of the unique dimensions of carbon sequestration in forestry is how materials generated in forest management are used. Continue reading

Check it out: New Resource on Cropland Soils’ Capacity to Store Carbon Through Improved Management

By Georgine Yorgey

Field of recently ploughed soil

The question “How much additional carbon could cropland soils store through improved management?” led to a new resource being developed. Photo: Leslie Michael.

When you work at a land grant university, people sometimes reach out to you with questions.  I love this aspect of my job, as it often gives me a chance to bridge the divide between research and the real world.  In 2019, one of the questions I got most often was “How much additional carbon could cropland soils store through improved management?”

Over the years, we had already worked to gather the available evidence from across the Pacific Northwest region and help managers interpret that evidence.  But these questions provided us an excuse to re-visit the question. Working with colleagues from Washington State University’s Center for Sustaining Agriculture and Natural Resources and the Department of Biological Systems Engineering, we prepared a white paper summarizing the existing experimental and modeling evidence relating to the carbon sequestration potential of cropland soils in the Pacific Northwest. Continue reading

Exploring Whether Washington State Could Become the New California in Vegetable Production

By Fidel Maureira, Ph.D. Candidate, Department of Biological Systems Engineering, Washington State University

Climate variability and change—rising temperatures, more frequent heat waves, drought, less snowpack, pests and diseases, wildfires, and the resulting over-use of resources such as groundwater—are creating critical agricultural production risks for California, the leading vegetable and fruit producing area of the United States. These issues are projected to get worse in the future. In contrast, climate change-related challenges in the Columbia River Basin are projected to be less extreme and there is potential for a more favorable climate for certain agricultural products, providing the Columbia River Basin with relative competitive advantages over California. Can the irrigated areas of Washington State supplement some of the expected losses in vegetable production in California? The answer is not clear yet, but we are exploring the implications of increasing vegetable production in the Basin, using climate change projections and models that quantify how regional hydrology and crops would respond to those climatic changes (Figure 1).

Diagram showing expected changes in vegetable production and certain crops expected in the future, in Washington and California

Figure 1. Vegetable production in California will suffer a reduction in total production because of rising temperatures effects on vegetables and a higher risk of water shortages. In contrast, Washington will show positive conditions in mid-century for growing crops and good supply of water. Can the irrigated areas of Washington State supplement some of the expected losses in vegetable production in California? This could be a beginning of new vegetable production in irrigated areas of Washington. Footnotes refer to references, below.

Continue reading