Category Archives: Vulnerability

Ice, Ice…Maybe?

Q&A with Anders Carlson and Aaron Hartz of the Oregon Glaciers Institute

By Paris Edwards

Did you know that the Northwest is the most glacier-rich region in the lower 48? Glaciers throughout the region provide essential cool, late-summer water for irrigation, fish, and for our taps. Their fate under warming climate conditions, however, is shaky. Even though glacial melt water is crucial to ecosystems and economies alike, we know shockingly little about how much water glaciers provide or where it flows.

Two people in snow gear and skis in a snow field, with a snow covered mountain in the background

Anders Carlson (left) and Aaron Hartz (right) are founders of the new Oregon Glaciers Institute. Photo credit: Jason Sotomayor.

Aaron Hartz and Anders Carlson, founders of the new Oregon Glaciers Institute, are friends, scientists, and potentially part mountain goat. Their mission is to document and study the causes of change for Oregon’s poorly understood and undervalued glaciers, by foot and by photo, and to provide projections of each glacier’s future. Both Oregon State University alumni, collectively they bring decades of full-spectrum knowledge and experience that spans professorial expertise, and the hard-won nitty-gritty knowhow that comes from avid exploration of high alpine terrain. I talked to these intrepid scientists and adventurers about what inspired their work and what they are discovering about the current and future health of one of the region’s essential water resources.

Continue reading

What Does Climate Change Mean for Flooding in the Columbia River Basin?

By Karen Hills

Aerial view of farms along a river with flood waters in fields and around buildings

Figure 1. The Pacific Northwest was hit by an historic flood in February 1996. Corps dams were put to the test and held back as much of the flood waters as possible, but too much rain fell in the valley below the dam. As a result, many communities in western Oregon felt the impacts of the flood waters. Photo: Portland Corps under CC BY 2.0.

Previous posts on AgClimate.net have focused on research related to anticipated climate change impacts on water availability and timing of available irrigation water in the Columbia River Basin, given the concern with having sufficient water to support the range of uses in the region. But is too little water the only concern? Laura Queen of the Oregon State University Climate Change Research Institute is the author of a recently published paper titled “Ubiquitous increases in flood magnitude in the Columbia River Basin under climate change.” Queen and her colleagues explain how in systems dominated by snowmelt, as is common in the Pacific Northwest, observational studies have shown consistent changes toward earlier spring streamflow and lower summer streamflow. This change has important implications for water users in the region. Less frequently discussed are the anticipated impacts on flooding (Figure 1), which is second only to fire in federal disaster declarations brought about by natural disasters in the Pacific Northwest. Continue reading

Check it out: Putting Oregon’s September Fires in Past—and Future—Context

By Sonia A. Hall

Roadside Fire Danger sign showing "Extreme" danger

Fire danger was considered extreme on and around Labor Day 2020. Close to the Beachie Fire in Marion County, OR. Photo: Oregon Department of Transportation, under CC BY 2.0.

Most of us probably agree that 2020 was an unprecedented year in many ways. Much of the western U.S. will remember 2020 for, among other things, the extensive fires that burned across many states. One of those states is Oregon, where climatic and weather conditions converged during Labor Day to enable large fires across the western slopes of the Cascades. Check out climatologists John Abatzoglou, David Rupp, and Larry O’Neill’s article titled Climate Enabling Conditions and Drivers of the Western Oregon Wildfires of 2020. They discuss the conditions that enabled these fires, and provide some historical context for their occurrence. Spoiler alert: their concluding paragraph states that “The best science available indicates that the conditions that enable large wildfires and wildfire seasons will become more common as a result of climate change and past and current land management and land use.” Many communities are heeding this information and working towards reducing vulnerabilities and improving resilience, to better deal with future fires. Please share with us and AgClimate.net readers those tools, resources and information you have found useful in such efforts.  You can comment on this post, or contact us via the Ask A Question tab.

A Review of Climate Change Research in the Columbia River Basin: Missing the Mark on Agriculture

By Paris Edwards

Stream through an alpine meadow, with a snowcapped mountain in the background

Headwater streams originate in mountainous areas and add critical snowmelt to summer and early fall stream flows. Slow and steady melt off of winter snowpack provides water during the dry season when crops need it most. Photo by Picasa, Wikimedia Commons under CC BY-SA 3.0.

Our understanding of regional climate change effects today will be used to inform management, policy, and the new scientific endeavors of tomorrow. With this in mind, a team of doctoral students from the Water Resources Department at the University of Idaho in Moscow carried out a systematic review of all peer-reviewed studies through 2016 (550 of them) related to climate change in headwater regions of the Columbia River Basin. The purpose of the review was to explore what aspects of climate change impacts on water availability have been well studied, and where additional research is still needed (Marshall et al. 2020). We focused on mountain headwater regions because these critical water-generating areas are vulnerable to increasingly warm winter temperatures that contribute to snowpack losses and increased variability in the timing and volume of water available for multiple uses. Water availability supports values we care about and communities in our region, including irrigation; the future of irrigated agriculture in the Basin depends on water, and at least 20% of surface supply in the Basin is generated from melted snow. Continue reading

Pathways to Progress in Tackling Stormwater Runoff in Near-Urban Agricultural Areas

By Kevin Hyde, Puget Sound Partnership

Culvert draining into a pool of water with oily slick on the surface

Stormwater pollution impacts many of the things Puget Sound residents hold dear. Photo: Washington State Department of Ecology.

Stormwater runoff, particularly from roadways, is one of the leading sources of water pollution in Puget Sound. Stormwater pollution impacts people and ecosystems in different ways. Many of the things Puget Sound residents hold dear, like swimming along rivers and beaches, harvesting and eating shellfish, and fishing for salmon, are directly affected by stormwater pollution. The Puget Sound Partnership works with many groups to tackle this complex problem, and polluted stormwater runoff is a focus of the Toxics in Fish Implementation Strategy, a recovery plan that aims to reduce the levels and impacts of contaminants on Puget Sound aquatic life.

Jordan Jobe, with Washington State University Extension, points out in a recent article that stormwater pollution also has implications for local food systems and farmers. She highlights the need to better understand the impact of stormwater runoff on agricultural viability in near-urban agricultural areas, where it may impact soil health, or contaminate crops. Continue reading

Check it out: How does the Columbia Basin Fare as the Timing and Volume of Snowmelt Changes?

By Sonia A. Hall

A broad river, with snow covered mountain in the background.

The Columbia River is fed by snowmelt from surrounding mountains. These waters are used for irrigating crops, as well as other uses. Snowmelt patterns are expected to change across the world as the climate continues to warm. Photo: Flickr user jaisril under CC BY-NC-ND 2.0.

It is not always easy to extract regionally-relevant conclusions from global studies, such as the one discussed in the August 2020 CIRCulator article “Irrigated Agriculture, Snowmelt, and Climate Change.” So though many of the irrigation-dependent crops studied are not typical to the Pacific Northwest, this article discusses research that synthesizes key risk factors—whether a basin is currently dependent on snowmelt for irrigation water; how far out of sync water supplies and agricultural demand will become; can a basin realistically find new ways to store water, replacing the snowpack’s storage capacity—into a snowmelt hazard index. Big, global picture: The Columbia River Basin is expected to do better than watersheds to the south and the east, but overall received what the CIRCulator article called “a middling-but-still-worrisome snow hazard scale rating,” putting it, interestingly enough, right “next to the Tigris/Euphrates Basin.” Check out the CIRCulator article for a lot more detail, or, if you have access through a library or subscription, delve into the actual publication in Nature Climate Change.

 

Reference: 

Qin, Y., Abatzoglou, J.T., Siebert, S., Huning, L.S., AghaKouchak, A., Mankin, J.S., Hong, C., Tong, D., Davis, S.J. and Mueller, N.D., 2020. Agricultural risks from changing snowmelt. Nature Climate Change, 10(5), pp.459-465. https://doi.org/10.1038/s41558-020-0746-8

Check it out: Is Climate Change or Forest Management Causing Megafires?

By Sonia A. Hall

Mountainous landscape with smoke billowing up from wildfires

The Bobcat Fire, one of 2020’s megafires that resurfaces the question of whether forest management or climate change is driving these fires.

In response to the recent—and in California, ongoing—megafires, many have been asking whether the cause is climate change or forest management. Erin Hanan wrote a blog article arguing that this is not the right question, because in many cases both contribute to what is happening. The drivers of fire activity are complex, and the relative importance of these different drivers varies from one location and ecosystem to another.

Check out Hanan’s article to explore the five key things we need to know about the causes of the current wildfire problem. Understanding these five things can help us navigate the question of what is driving increased fire activity and, most importantly, can help us determine what can be done to reduce such large fires in the future.

Hot, Dry Summers Take a Toll on Trees in Western Washington

By Patrick Shults, Washington State University Extension

Tops of two conifer trees, one showing dead branches at the very top, with green canopy below

Western redcedar with a dead top as a result of drought stress. Photo: Patrick Shults, WSU Extension.

The coastal Pacific Northwest is home to some of the best tree-growing conditions in the world.  Fertile soils, plenty of rain, mild temperatures, and short dry seasons allow trees to pack on solid growth each year.  These conditions also give them a significant advantage in protecting themselves from insects and disease with tactics like pitching sap to flush out bark beetles, isolating roots infected with fungus, and compartmentalizing wounds.  However, these defenses are only possible when trees can avoid environmental stressors and, given a changing climate, certain stressors are expected to become more frequent.

Trees in this area have evolved to handle an annual dry season and, generally, mild temperatures during that time ensure they don’t suffer too much stress.  However, in the last decade the coastal Pacific Northwest has experienced unusually stressful conditions.  The summers of 2015, 2017, and 2018, for instance, were very dry and also particularly hot, which worsens moisture stress in trees.  While it is difficult to attribute any given year to climate change, climate modeling suggests hotter summers like these may be a new normal, and a drive down I-5 in western Washington will show many trees have already paid a price. Continue reading

Acting to Prepare for Severe Droughts in the Yakima River Basin

By Mengqi Zhao, recent PhD graduate, Washington State University

Collage of three photos, with plants in greenhouse, a dry pond with no vegetation, and a sprinkler over a crop, close up

Figure 1. Under low water availability conditions, the reliability of irrigation systems can be enhanced through strategies that improve water supply when it is needed or reduce water demand. Examples include greenhouses (left), aquifer recharge (recharge pond, top right), and irrigation technology (bottom right). Photos: Mengqi Zhao (greenhouse and pond) and Kay Ledbetter, Texas A&M AgriLife Research, under CC BY-NC-ND 2.0 (sprinkler).

For more than fifty years, individuals and organizations in the Yakima River Basin (YRB) have been working toward improving water availability, especially for agriculture. The mismatch between rainfall (and snowmelt) timing and the irrigation season has focused these efforts on strategies for increasing water storage. However, farmers frequently encounter insufficient irrigation water supply and large demands from agricultural activities, resulting in prorationing across irrigation districts during every severe drought of record since 1970s. In the Pacific Northwest, projected water scarcity situations under future climate change scenarios could increase to 68% of years in the 2080s if no actions are taken, compared to only 14% of years on average historically (Vano et al., 2010).

Facing such frequent low water availability conditions, what methods can improve the reliability of irrigation systems? How might people’s decisions on adopting those methods affect system vulnerability to droughts? The fundamental solutions to these questions rely on strategies that either improve water supply when it is needed or reduce water demand. Continue reading

Forest Insects and Disease – Watching for Weirdness

By Chris Schnepf

Close up of a sapling with sporulating blister rust

Blister rust has to have very high humidity to successfully infect white pine needles. Photo: John Schwandt.

When it comes to climate change, many people focus on raw physics: how much more precipitation or less, the number of frost free days, how many days a year above or below certain temperatures, the length of the fire season, etc. These dimensions are all important to reflect on and study, but it may be that some of the most significant climate change effects could be things we can’t even imagine – what some people might refer to as “global weirding.”  Continue reading