Category Archives: Variability, Weather, & Extreme Events

Climate Adaptation: USDA Programs and Resources That Can Help

By Paris Edwards, Haley Case-Scott, and Holly R. Prendeville, USDA Northwest Climate Hub

Rural landscape showing flooded fields, roads, and buildings

Figure 1. Drone photo of highway 34 closed near Corvallis, Oregon. 11 April, 2019. Photo: Oregon Department of Transportation under CC BY 2.0.

Whether you are reading the news or talking with your community, the number of stories about how climate change and its impacts affect daily life and business across the Northwest, the United States, and the world is growing. Recently, there have been a number of extreme weather events in the Northwest. In January 2019, central Washington was hit by a blizzard that devastated dairy farmers. In April, Oregon rivers, including the Willamette and Santiam, reached flood stages that caused debris flows, pollution, and lead to evacuations throughout Eugene (Figure 1). Boise, Idaho experienced record rainfall between January and May this year, which contributed to grass growth throughout the region and raised concerns about an increase in wildland fire potential. Fortunately, cooler temperatures prevailed, resulting in a relatively mild wildland fire season and a break from smoke for Idaho, Oregon and Washington. Although it isn’t always clear if a particular event is due to climate change, more frequent and extreme weather occurrences are expected. These current events, alongside disasters of the recent past, highlight what we can expect to see more often in the future, given the predicted increases in flooding, extreme heat events, drought, and wildfire. Such events give added urgency to the need for efforts to reduce negative impacts and support resilience (Jay et al., 2019). Yet it is challenging for producers and natural resource managers to find the resources they need to do so. Continue reading

Check it out: Measuring Water Use Rather Than Water Diversions

By Sonia A. Hall

Small dam diverting water from a river into an irrigation canal

Irrigation dam and diversion in Idaho. Photo: Mark Plummer under CC BY-NC-ND 2.0.

There is a difference between the amount of water diverted from streams and rivers to irrigate crops, and the amount of water consumptively used in those irrigated fields, which includes what the crops actually transpire, plus what evaporates from these fields. The difference is sometimes called return flow, as it percolates through the soil and becomes available for use further downstream (this earlier article has a diagram that reflects that, so take a look).

Decisions about water allocation and water use in the Pacific Northwest are mostly made based on diversions, because that’s what we can measure, using water meters for example. But when we discuss whether more efficient irrigation technology should be used, or ways to reduce conflicts between out-of-stream and instream water needs, consumptive use—the water used by crops and lost to evaporation—is also really important. Check out this article on METRIC, a method using remote sensing to measure water consumption in Idaho. And take a look at the 2016 Columbia River Forecast for a pilot application of METRIC in Washington State, work that is currently being expanded with support from the US Department of Agriculture as part of the Washington State University led Technology for Trade project. What do you think would be the benefits of having this technology available across the Columbia River Basin? Take a minute to comment below. And stay tuned for more on METRIC as this research progresses.

What You Need to Know About Fruit Acclimation to Heat Stress

By Antoinette Avorgbedor

Intern at Washington State University’s Tree Fruit Research and Extension Center and the Center for Sustaining Agriculture and Natural Resources

Looking along grape vine rows, with arid hills in the background

Agriculture in arid conditions can be challenging for fruit development. Could acclimation help with those challenges? Photo: Cliff Hellis, under CC BY-NC-ND 2.0.

Did you know that people indigenous to the hotter equatorial regions have much lower sweat rates than people in cooler regions of the world? Similar to the ability of the human body to adjust to different climatic conditions, plants have evolved various mechanisms to survive extreme weather conditions. Besides long-term evolutionary modifications, plants have been found to develop quick short-term tolerance to extreme environmental conditions. Many different plant species have been reported to develop “memory” to stress, which then helps protect against future adverse conditions. I found this topic pretty interesting. What types of benefits could be derived from a deeper understanding of how plants “acclimate” when experiencing physical stress factors? And could understanding this ability be useful for improving their tolerance to stress, so they can avoid some of the impacts of stress on fruit production? Continue reading

The Forest Service’s Climate Adaptation Publication is a Worthy Resource for All Landowners

By Chris Schnepf

The cover of the General Technical Report

Halofsky, Jessica E.; Peterson, David L.; Dante-Wood, S. Karen; Hoang, Linh; Ho, Joanne J.; Joyce, Linda A., eds. 2018. Climate change vulnerability and adaptation in the Northern Rocky Mountains (Parts 1 and 2). Gen. Tech. Rep. RMRS-GTR-374. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.

Foresters were among the first to start thinking about the possible effects of climate change, in part because of the long-term nature of forests—foresters commonly reflect on management issues on 50 or even 150-year time scales. Because forests are also highly valued for other benefits in addition to commodity production (i.e., wood), those managing forests are also particularly aware of the long-term effects of their management on water, wildlife, soil, and other ecosystem benefits.

One of the best examples of that broad, long, view is a recent new publication titled “Climate Change Vulnerability and Adaptation in the Northern Rocky Mountains,” a two-part, 495-page document produced by the USDA Forest Service). The publication is the result of a process that had extensive involvement from Forest Service personnel, non-governmental partners, and universities in a series of 2- and 3-day workshops throughout the Northern Region of the Forest Service (including one in Coeur d’Alene, Idaho). Continue reading

Check it out: New Resource for Healthy Soils and Climate Resilience

By Gabrielle Roesch-McNally

Hand holding a clod of soil full of roots and worms

Healthy soils can build greater resilience and reduce risks in the face of more extreme and variable weather. Photo: Aaron Roth/NRCS under CC BY-ND 2.0.

Climate change is expected to increase the vulnerability of our agriculture and natural resource systems. In the face of more extreme and variable weather, there are a suite of soil health management practices that land managers can adopt to build greater resilience and to reduce risks in their agricultural operations (examples of strategies in Figure 1).

Through engagement with land managers and those who work with them, including Extension, Natural Resource Conservation Services (NRCS), and Soil and Water Conservation District (SWCD) professionals, it became clear that many of them were interested in soil health and its linkages with climate change adaptation and mitigation. As a result, Oregon NRCS and the USDA Northwest Climate Hub partnered to develop a resource to aid advisors and land managers in discussing soil health and climate resilience together. Continue reading

Check it out: Extreme Winter Weather Severely Impacts the Dairy and Cattle Industry

By Laurie Houston

Person walking through snow to a car buried in a drift which completely covers the fence behind it.

The February 9, 2019 blizzard in eastern Washington dumped 2-3 feet of snow, and winds created drifts that fully covered ditches and fences. Photo: Washington State Department of Transportation under CC BY-NC-ND 2.0.

If you live in the Northwest, you either experienced first-hand or certainly heard about this past week’s blizzard in eastern Washington State.  This area does not usually get much precipitation over the course of a year.  During the winter, they may typically get a few inches of snow in any given storm. This storm, however, took many people by surprise and dumped 2-3 feet of snow in parts of eastern Washington, while bringing in winds from the east and temperatures in the low teens. Over 1,600 dairy cows were killed in this freak blizzard. At an estimated $2,000 per head, that is a loss of $3,200,000, spread over a little more than a dozen farms. That is huge unforeseen expense for struggling farmers to absorb, and a large amount of dead animals to dispose of safely.

Continue reading

Check it out: New Publication – Cultivating Climate Resilience on Farms and Ranches

By Gabrielle Roesch-McNally

Sunset over a flooded agricultural landscape.

Farms and ranches are expected to face challenges as climate change leads to more extreme and variable weather. Photo: Flickr user Brent M. under CC BY 2.0.

USDA SARE (Sustainable Agriculture Research & Education) recently published a new resource for land managers and those who advise them titled, “Cultivating Climate Resilience on Farms and Ranches.” This resource outlines some of the challenges that farmers and ranchers will face as climate change leads to more extreme and variable weather. While the resource is national in scope, there is a great table that briefly explores the observed and expected changes in weather across seven U.S. regions, including the Northwest (Table 1). Continue reading

Tools for Reducing the Increasing Forest Fire Risks

By Chris Schnepf

Rubble of a burned house, surrounded by scorched trees

Different factors can contribute to homes burning in catastrophic fires, including climate change and where people choose to build. Photo: C. Schnepf.

It was impossible to watch all the media coverage of the California fires last year, with many homes and forests burning, and not be moved. When large destructive fires like this hit, people have a natural desire to put some meaning to it. A variety of voices spoke of the changes in climate as being the culprit. Some pointed to fuel build-ups that were heavier than those forests had historically. Others pointed to people moving into parts of the landscape that were very fire prone, and suggested it was only a matter time before homes burned in forest fires. As with so many things, all these explanations for the impact of the fires contain some truth. Continue reading

Shared Data is a Key Part of Integrated Floodplain Management in the Puyallup Watershed

By Jordan Jobe, Center for Sustaining Agriculture and Natural Resources, Washington State University

In the Puget Sound Region, it’s clear that climate change impacts will involve changes in precipitation that will impact agriculture, especially agriculture in floodplain areas (Mauger et al. 2015). However, it’s not yet known how precipitation pattern changes will combine with changes in stormwater run-off and sea-level rise… and how these changes might differ between different watersheds. Flood risk reduction folks want this information so that they know how to properly size new culverts. Fish folks want this information to place and design salmon habitat restoration projects.

A drainage ditch very full with brown, near-stagnant water.

Nancy’s Ditch, a key agricultural ditch in the Puyallup Watershed’s Clear Creek area, is consistently slow-flowing and full of water. Photo: J. Jobe.

Continue reading

Engaging Climate Science through Citizen Science Apps

By Chris Schnepf

Queencup beadlily flowering on a forest floor

“Nature’s Notebook” is an app that can be used to collect phenology data such as flower timing. Photo: C. Schnepf.

Trying to understand how climate is changing, and how these changes affect the crop yields, forest growth, water from melting snowpacks, and all the other parts of our natural world, is very challenging. Increasingly, some of the primary tools for understanding these phenomena are models.

One of the biggest misconceptions about models is the idea they are not based in the real world – that they are just theoretical constructs, untethered to actual measurements. There are models like that – even philosophers are playing with models these days. But most of the models used in the natural sciences depend on empirical data – measurements of things like temperature, precipitation, crop yields, tree mortality, and many other attributes. Continue reading