Category Archives: Variability, Weather, & Extreme Events

Deficit Irrigation Conserves Water in Agriculture to Aid in Combating Water Stress

By Sarah Davis, Intern at Washington State University’s Tree Fruit Research and Extension Center and the Center for Sustaining Agriculture and Natural Resources

A group of red apples, showing a sticker labeling them from Chelan

Washington state produce can be found in supermarkets across the world. These Chelan apples were found in Kuala Lumpur. Photo: Flickr user Dennis Sylvester Hurd, under CC0 1.0 Universal

Washington State has nearly 15 million acres of farmland with around 39,000 operating farms, each producing necessary agricultural commodities. A few of the most well-known crops that are produced and distributed from Washington State are apples, cherries, hops, raspberries, and pears. Even when traveling across the country, I can find Chelan apples, which shows just how productive the state is in their cultivation of high value foods. Many of the 39,000 operating farms require irrigation to produce much of the aforementioned fruit that get distributed far and wide, which consumes a large portion of water resources. Continue reading

Check it out: High Temperatures are Threatening Pollination of Crops in the Pacific Northwest

By Sarah Davis, Intern at Washington State University’s Tree Fruit Research and Extension Center and the Center for Sustaining Agriculture and Natural Resources

Close up of bee on blossom

Pollination is key for all crops to survive and produce seeds, fruit, and grains. Photo: Flickr user Conall under CC BY 2.0

Throughout the last year, I have spent hours researching and writing about molecular techniques to combat heat and drought stress in agricultural crops while completing my undergraduate capstone project. So, when I found an article describing how the integrity of pollen is threatened by increasing temperatures, it seemed extremely relevant to both my project as well as my new internship at Washington State University where I am researching sustainable ways to address climate change impacts on tree fruit.

Continue reading

Water Markets’ Potential for Addressing Drought, Water Availability

By Karie Boone, Center for Sustaining Agriculture and Natural Resources, Washington State University

sockeye fish in river, center pivot irrigating field, mostly dry river bed with narrow flow of water at the bottom

Water markets is one potential tool for moving water between uses such as instream water for sockeye in the Yakima Basin (top left; photo: WA Dept. of Ecology) or irrigating crop fields (top right; photo: Aspect Consulting). Such movement can be particularly important when flows are low (Walla Walla River runs low late in the irrigation season (bottom; photo: WA Dept. of Ecology).

As climate change increases the likelihood of a mismatch in the timing of when water is needed and when it is available, policymakers, water managers, and water users are exploring water markets as one potential tool to move water between uses. Water markets facilitate the voluntary transfer of water between sellers and buyers, on either a temporary (lease) or permanent (sale) basis. To some this has meant water is accessible for crops during drought or for new housing developments. For fish, it may mean more water instream that enhances survival.

And yet, water markets are not quite as simple as other markets (say, the grocery store). There are lots of features of water that make purchasing it different than buying a loaf of bread. Continue reading

Cleaning Stormwater with Sequestered Carbon

By Chelsea Mitchell, PhD candidate, Washington State University, Washington Stormwater Center*

 

Runoff entering a bioretention system via a curb cut

Figure 1. Bioretention systems are designed to drain and filter stormwater runoff. Credit Carly Thompson, WSU Puyallup.

Stormwater runoff has become one of the greatest environmental challenges we face in western Washington, a region with heavy rainfall and widespread urbanization. In parts of the landscape dominated by impervious surfaces, such as roads, buildings, and parking lots, rainfall is not able to infiltrate the ground (Figure 1). Instead, the resulting runoff picks up pollutants, causes flooding and changes our waterways. These issues are expected to become more severe with population growth and climate change.

There is a bright spot on the horizon, though. A charcoal-like product known as biochar has potential to address these issues when used in stormwater management. Biochar is formed when biomass is heated under low or no oxygen conditions in a process called pyrolysis. By limiting the oxygen level, you limit combustion and the release of carbon dioxide during biochar production. The resulting material has a stable, carbon-rich structure which resists being degraded for hundreds to thousands of years, keeping the carbon locked in place. Continue reading

Adapting to Climate Change in the Yakima Basin: Agriculture’s Volatility and Tradeoffs

By Aaron Whittemore, Center for Sustaining Agriculture and Natural Resources, Washington State University

field seen under the arm of a central pivot irrigation system

Fifty percent of the Yakima Basin’s agriculture is irrigated. Photo: Vidar Mathisen, Unsplash.

The Yakima River Basin is a snow-dependent, agriculturally important region in Washington state, leading in production of many commodities and specialty crops. Nearly 50% of agricultural production in the Yakima Basin is irrigated, and is vulnerable to future expected temperature increases and severe droughts. Researchers at Cornell and Washington State Universities, led by Dr. Keyvan Malek, evaluated the impacts of changes in temperature, water availability, and atmospheric carbon dioxide concentrations on irrigated agriculture in this Basin and examined the effectiveness of potential strategies to mitigate the negative effects on crop yields.

Continue reading

Check it out: Learning for the Future from a Snapshot in Time

By Sonia A. Hall, Center for Sustaining Agriculture and Natural Resources, Washington State University

Report cover with name and a photo of a vegetable field with slanting sunlight and trees in the background

The 2021 Pacific Northwest Water Year Assessment, an example of what we can learn one year that helps us prepare for the long term. Source: cover of the report, available at https://www.drought.gov/documents/2021-pacific-northwest-water-year-impacts-assessment

I just received the 2021 Pacific Northwest Water Year Impacts Assessment. If you want to delve into the details of how temperatures and precipitation evolved throughout the water year (which runs from October 1 through September 30), check out section 3. If you want to understand what the unusual combination of conditions we experienced meant for the agriculture, forestry, drinking water, fisheries, and recreation sectors, check out section 4. If you want to learn about institutional responses to these conditions, then check out section 5. You can even explore how well the seasonal forecasting used by many in the region did at predicting what actually happened (section 6).

This report really got me thinking about the question: what can we learn from the assessment of this one year (granted, it was an unusual year) that can help us prepare for what’s to come as the climate continues to warm? Continue reading

Extreme Adaptation: Navigating the Troubled Waters of the ‘New Normal’

By David I. Gustafson, Adjunct Research Faculty at Washington State University

This article is part of a series, Climate Friendly Fruit & Veggies, highlighting work from the Fruit & Vegetable Supply Chains: Climate Adaptation & Mitigation Opportunities (F&V CAMO) project, a collaborative research study co-led by investigators at the University of Florida and the Agriculture & Food Systems Institute. Other collaborators include researchers at the University of Arkansas, University of Illinois, the International Food Policy Research Institute, the World Agricultural Economic and Environmental Services, and Washington State University. This project seeks to identify and test climate adaptation and mitigation strategies in fruit and vegetable supply chains.

 

Water. H 2 O. It’s the dominant molecule of our lives. We are 60% water (on average). Life as we know it is only possible because our planet has so much water. We can survive a few weeks without food, but only a few days without water. The oceans are believed to have formed around 4 billion years ago, and so are nearly as old as the planet itself. The hydrologic cycle—the series of processes by which water evaporates from those oceans, condenses as clouds, and then returns to the earth as freshwater—forms the primary basis for our existence.

Map of the US, with most of the midwest and east showing increases in average precipitation, and most of the west, especially the southwest, showing decreases

Figure 1. Comparison of the ‘new normal’ annual precipitation averages (1991-2020) with the previous 30-year averages (1981-2010). Source: NOAA.

Water is actually the most important greenhouse gas: without water in the atmosphere, the average temperature of our planet would be around 0°F… a mammoth version of those chic, spherical ice ‘cubes.’ But the average temperature of the earth is 60°F and climbing. As the world’s oceans continue to warm, water evaporates more rapidly, and the hydrologic cycle accelerates. All that water must come back down somewhere, so annual precipitation levels across the planet are also increasing. Continue reading

Recent News Stories on Agriculture and Climate Change – Why Now?

By Sonia A. Hall, Center for Sustaining Agriculture and Natural Resources, Washington State University

 

Flier for the Agriculture in a Changing Climate Workshop in 2016

AgClimate.net has been discussing all aspects of climate change and agriculture for years, as exemplified by a 2016 workshop AgClimate.net co-sponsored.

On AgClimate.net, we have been discussing impacts on agriculture resulting from a changing climate for years now. We also discuss practices or approaches that show promise for helping producers adapt to the changes to come. And we discuss the ways that the agricultural sector can reduce its greenhouse gas emissions or, conversely, capture carbon, mainly in soils. Recently, however, it appears that these kinds of issues are front and center for a much broader swath of the agricultural sector. What might be driving this shift? Could it be another example of the pandemic highlighting other vulnerabilities? Or is interest shifting because of scientists’ ability to better tease out the contribution that climate change is making to recent extreme events that are impacting our region? Continue reading

Resources for Navigating the Confluence of Drought and Wildfire

By Luke Brockman, Oregon State University, Forestry and Natural Resources Extension, Fire Program

 

Open fields transition to forested hillsides, with two large smoke plumes and dense smoke across the landscape. A firefighting plane crosses in front of the smoke

Drought is an important contributing factor to the dry conditions necessary for wildfire to spread to the levels we see today. Photo: USDA Forest Service under CC BY 2.0

Climate change is driving record high temperatures across the world, and among the effects in the Pacific Northwest is the increased severity of drought, which contributes to conditions already setting the stage for intense wildfires. Projected agricultural impacts of drought include losses in wheat, barley, and Christmas tree production. Additionally, the drought extremity we are experiencing this year correlates with the severity of wildfires, since drought is an important contributing factor to the dry conditions necessary for wildfire to spread to the levels we see today. Consider that this year’s wildfire season has been 19 times worse in terms of acreage burned than last year’s—more than 1 million acres by mid-August and counting in just Oregon and Washington, compared to a mere 52,000 acres at the same time last year––and conditions are likely to worsen in the coming years.

Gathering science-based, real-time information about wildfires burning in your state is important, but can certainly be a challenge when distracting “Breaking News” headlines and a whole host of other less than informative publications shroud your search results. Read on for some examples of how two online resources, drought.gov and the Inciweb site, can get you started with up-to-date information about drought, wildfire, and the effects that the changing climate is having on our neck of the woods. Continue reading

What Can We Learn from the ‘Pacific Northwest Heat Dome’ of 2021?

By Nicole Bell, Center for Sustaining Agriculture and Natural Resources, Washington State University

Close up of leaves and berries, with leaves curled and with large brown areas, and most berries tan colored, contrasting with one black berry

Heat wave damage to a commonly grown blackberry cultivar, Columbia Star (photo taken July 1, 2021). Photo courtesy of Dr. Bernadine Strik.

It wasn’t just hot in the Pacific Northwest (PNW) during the last week of June. It was extraordinarily hot. Temperatures at Oregon State University’s North Willamette Research and Extension Center (NWREC) in Aurora, Oregon, reached a high of 113°F on June 28, with a nighttime low of 85°F. It wasn’t just one day of scorching temperatures, though—much of the PNW experienced more than three consecutive days of highs in the triple digits, with lows staying above 65°F. With temperatures peaking in Lytton, British Columbia, Canada, at 121°F, some outlets are calling this multi-day event a heat dome. Growers are feeling the impact of June’s high temperatures. How does this type of heat affect staple and specialty crops, and how can the agricultural industry in the Pacific Northwest best prepare for events like this to come? Read on for some insights from the June heat dome.

A wide variety of crops were impacted by the record-setting heat, notably berries, cherries, and even some vegetables across the region. Continue reading