Category Archives: Uncategorized

Cover Crops, Community and Climate Change

By Avery Lavoie, Fellow at Oakridge Institute for Science and Education, Environmental Protection Agency, and recent University of Idaho graduate.

Group of people in an agricultural field

Cover crops could be one way to help dryland crop producers adapt to climate change by reducing soil erosion, improving soil fertility, and improving moisture holding capacity. Demonstration field trip in Okanogan, WA. Photo: Avery Lavoie.

Across the nation, there is an increased interest in cover crops: those planted during the fallow period or in place of a cash crop to improve soil and water quality and mitigate the impacts of climate change. In the inland Pacific Northwest, dryland crop producers may experience an increase in spring precipitation by 5-15% over the next 40-70 years (Painter, Borrelli, and Steury 2014), warmer temperatures, and drier summers. Although not widely used, cover crops could be one way to help dryland crop producers adapt to climate change by reducing soil erosion and improving moisture holding capacity, as well as improving soil fertility.

Researchers, extension agents, and conservation agencies are collaborating with crop and livestock producers to determine what will best support their livelihoods and sustain the soil and land for future generations (See REACCH and LIT Projects). But will this work address the challenges that are keeping producers from adopting adaptive practices like cover crops? Dr. Chloe Wardropper and I were interested in hearing directly from crop and livestock producers about their perspectives on those challenges and the potential opportunities for increasing cover crop adoption. Continue reading

Out of the Frying Pan and into the Fryer: Climate Mitigation Opportunities for French Fries

 By Nicole Bell, Center for Sustaining Agriculture and Natural Resources, Washington State University

 This article is part of a series, Climate Friendly Fruit & Veggies (see sidebar), highlighting work from the Fruit & Vegetable Supply Chains: Climate Adaptation & Mitigation Opportunities project, a collaborative research study co-led by investigators at the University of Florida and the Agriculture & Food Systems Institute. Other collaborators include researchers at the University of Arkansas, University of Illinois, the International Food Policy Research Institute, the World Agricultural Economic and Environmental Services, and Washington State University. This project seeks to identify and test climate adaptation and mitigation strategies in fruit and vegetable supply chains.

Top: oven dish with frozen french fries laid out. Bottom: a saucepan with fries in bubbling oil.

The way food is prepared presents a significant opportunity to reduce greenhouse gas emissions. Photos: Chris Campbell under CC BY-NC 2.0 (top); Flickr user Joy under CC BY 2.0.

Efforts to quantify the carbon footprint of agriculture are often focused on the greenhouse gas emissions resulting from on-farm activities, mostly from fertilizer production and the energy required for use of farm implements. While you, as a climate change-conscious consumer, may place your attention on the environmental impact of your food before it arrives in your grocery bag, a recent study published in the Science of the Total Environment examined the relative impact of different parts of the supply chain (on-farm, processor, retail, and consumer) for potato and tomato products, both fresh and processed. Study authors from the University of Arkansas, led by Ranjan Parajuli, assert that the way food is prepared presents a significant opportunity to reduce greenhouse gas emissions. If the goal is to reduce the overall environmental foodprint, changing the way potatoes are cooked may make more of a difference than how the potatoes themselves were grown. Continue reading

Drought and small revenues – do they always go hand in hand?

By Sonia A. Hall

The conditions the Northwest experienced in 2015 have received a lot of attention, because we saw drought even though precipitation was close to normal. So the drought was due to higher temperatures, which meant snow didn’t accumulate anywhere near as much as it does on average. With less water available for irrigation in summer (see our earlier articles on the 2015 drought here and here), we’d expected irrigated crops to suffer, and we’d also expect growers’ bottom line to suffer.

Drought (and other stresses) can have a significant impact on crop production—see this comparison of the size of an ear of corn in Missouri during the 2012 drought to its “normal” size (space between hands). The expectation is that decreases in production will lead to drops in revenue, but is that always the case? Photo: Malory Ensor/KOMU News under CC BY 2.0

But when the National Agricultural Statistics Service’s Annual Statistical Bulletin for Washington State came out in October 2016, it was followed by an article in Capital Press discussing the apparent paradox that agricultural production values hit record highs in 2015, even though the region was under that newsworthy “snow drought.” Continue reading

Happy Holidays!

Happy Holidays from the team!  Catch up on all our posts from 2016 and join us again for an exciting new year in 2017!  Don’t forget to sign up for our newsletter.

Best Wishes from all of us!!