Category Archives: Sustainable Practices

Check it out: Looking into New Technologies, Governance and Market Ideas to Improve our Use of Water

By Sonia A. Hall

Water is a precious resource in the Columbia River Basin, and climate change could lead to changes in factors that affect how to most efficiently allocate water to the many uses and values in the region, a challenge even now. This future is not bleak, however. A research team led by Jon Yoder at Washington State University has been funded to develop new technologies to help decision-makers improve how they use water to meet the diverse needs of farms, people, fish and the rivers themselves. Check out this article on their research plans into smart market technology, seasonal forecasting, and automated monitoring of agricultural (and other) water use.

Apricot orchard in bloom, with storm clouds overhead.

Seasonal forecasting of water availability and crop productivity can inform the decisions of potential water market participants. Photo: Flickr user Pictoscribe under CC BY-NC-ND 2.0.

Monitoring for Forest Health Can Help You Adapt to Climate Changes

By Chris Schnepf

Researcher squatting beside a pine tree

Monitoring for blister rust cankers is important for managing young white pine. Photo: C. Schnepf.

One of the first ways we expect climate change to impact forests is with the behavior and effects of forest insects and diseases. To assess that, it is important to monitor forests for evidence of insects and diseases that kill trees. Continue reading

How is our changing climate likely to impact wheat production in other places around the world? Why should we care?

By Doug Finkelnburg

Let’s address the title’s second question. Wheat makes up 18% of calories consumed by humans on this earth. Historically, changes to the supply and distribution of wheat due to environmental or political factors creates economic ripple effects felt globally. A crop failure, embargo, or tariff spat in the far corners of the earth affects cash bids for wheat at Portland or Chicago. Such is the fate of internationally traded commodities and the fate of the single largest cash crop for dryland farmers in the Pacific Northwest. Wheat is integral to our local agricultural economy, is in increasing demand globally and major wheat production areas around the world could become more or less suitable for growing wheat as the climate changes.

Growing wheat crop extending across the hills in the background

Pacific Northwest wheat production is expected to benefit from a changing climate. Photo: Jeff Few under CC BY-NC-ND 2.0

Continue reading

To Adapt to Change in the Inland Pacific Northwest, or Not to Adapt

By Gabrielle Roesch-McNally

Multiple climate projections for the Pacific Northwest suggest that our region’s agriculture will be impacted as our climate continues to change. Are farmers preparing for these changes? And if not, why not? These are the questions I hoped to answer as part of my research.

Rolling hills with green wheat field in the foreground and flowering yellow canola in the background

Wheat and canola crops planted at the Washington State University’s Cook Agronomy Farm near Pullman, WA. Photo: Gabrielle Roesch-McNally.

Continue reading

How will Climate Change Affect the Use of Fallow in Cropping Systems in Our Region?

By Karen Hills

In non-irrigated areas that are too dry to support annual cropping, fallow (the practice of leaving land unplanted) preserves soil moisture for future crops. However, annual fallow combined with conventional tillage has resulted in a net decrease in soil carbon over time in our region, with negative impacts to soil health across large areas. And even when tillage is eliminated, it is very difficult to maintain soil carbon over time in a wheat-fallow system.  For this reason, the impact of climate change on the frequency of fallow in crop rotations has important future implications both for soil health and for opportunities for carbon sequestration.

Two papers published last year by Kaur et al. and Karimi et al. use modeling to project the impacts of climate change on dryland cropping systems. Continue reading

Tree Planting and Provenance Testing in Response to Climate Change

By Chris Schnepf

Many countries enthusiastically plant trees that are not native to their shores. One of the best examples is New Zealand, which has extensive plantations of genetically improved Pinus radiata, a species native to northern California and known here as Monterey pine. If you noticed pine forests that humans, elves, and orcs scurried through in the Lord of the Rings movies (filmed in New Zealand), you were likely looking at planted, non-native trees. Continue reading

Calculating Climate Benefits for Climate Smart Farms

By Georgine Yorgey

Farmer and long-time CSANR advisory committee member, Dale Gies. Photo: Sylvia Kantor.

What are the climate impacts of a given farm practice?  While we know lots of strategies for reducing greenhouse gas emissions on farms, quantifying that impact can be difficult.  However, there is at least one farm in our region – one that uses some pretty neat practices – for which scientists have attempted to answer that question.  And the farmer just happens to be a long-time member of the Center for Sustaining Agriculture and Natural Resources’ advisory committee, Dale Gies. Continue reading

Turning Urban Wood Waste into Biochar

By Karen Hills

Biochar as a soil amendment has been the subject of much attention in recent years because of its ability to sequester carbon and to improve aggregation, water holding capacity, and organic matter content of soil amended with it (Lehmann, 2007; Marris, 2006). A recent post discussed what’s needed to economically produce forest to farm biochar. In contrast, researchers at Washington State University are investigating what we could call waste to farm biochar. Waste to farm biochar, if deployed on a larger scale, could offer a two-part benefit – removal of wood from the municipal solid waste stream and creation of a valuable product from this wood. In recent work, researchers are looking at two possible wastes that could be made into biochar: wood-based fractions of municipal solid waste and the large woody material remaining after compost production—referred to as “compost overs.”

Figure 1: Images of the woody biomass sources used to create biochar for this project, including compost overs and wood-based products from municipal solid waste. (source: WTFT 2015-2017 report; photo credit: M. Ayiania)

Continue reading

OneNOAA CSSR series

Beginning Thursday, July 12 at 9:00 am Pacific Standard Time – and occurring weekly at that time through Tuesday, August 28 – the OneNOAA seminar series will be hosting an 8-part suite of talks on different aspects of the National Climate Assessment 4 Volume I – the Climate Science Special Report.  This is a fantastic opportunity to learn about the latest climate science from some of the nation’s most eminent scientists!

  • Thurs, July 12: Climate Science: What’s New? – Katharine Hayhoe (Texas Tech University)
  • Thurs, July 19: Detection and Attribution of Climate Change from the CSSR – U.S. Perspective – Tom Knutson (NOAA-GFDL)
  • Thurs, July 26: Droughts, Floods, and Wildfire – Michael Wehner (DOE-LBNL)
  • Thurs, Aug 2: Climate Potential Surprises – Compound Extremes and Tipping Elements – Radley Horton (Columbia University / Lamont-Doherty Earth Observatory)
  • Thurs, Aug 9: Climate Long-Term Climate Mitigation Perspectives and the 2°C Objective – Ben DeAngelo (NOAA)
  • Thurs, Aug 16: The Causes and Consequences of a Rapidly Changing Arctic – Patrick Taylor (NASA-Langley Research Center)
  • Thurs, Aug 23: Climate Tidings of the Tides – Billy Sweet (NOAA)
  • Tues, Aug 28: The Fourth U.S. National Climate Assessment: An Overview of Volume 1 – Don Wuebbles (University of Illinois)

Forest to Farm Biochar – What will it take?

By Laurie Houston

Biochar made from woody biomass. Photo: Oregon Department of Forestry under CC BY 2.0.

My colleagues kicked off a discussion on biochar with their recent articles. Biochar can potentially be a win for soil health, for carbon sequestration in soils, and for fire risk reduction in forests. Kristin Trippe talked about the benefits of biochar as soil amendments in agricultural soils, and a tool to help producers choose biochar products. Chris Schnepf and Darrell McAvoy discussed the benefits and challenges of using forestry slash to produce biochar, and how mobile kilns can facilitate that. So, if biochar has all these benefits why aren’t all farmers spreading biochar on their fields? And why isn’t all the biomass from thinning being processed into biochar? Continue reading