Category Archives: Sustainable Practices

Greenhouse Production of Vegetables: Implications for the Region

By Fidel Maureira, Ph.D. Candidate, Department of Biological Systems Engineering, Washington State University

Dense rows of pepper plants in a greenhouse, on either side of a set of rails

Figure 1. Greenhouse production facility for bell peppers. Photo: Fidel Maureira.

Greenhouse agricultural production currently accounts for 1 to 2% of the agricultural production in the Unites States, but is rapidly growing. The value of this greenhouse production has increased 44% in the last years, and the number of operators has gone up by 71%. Large retailers have a significant interest in this technology, given the benefits of consistency in quality, flavor, and production volume, the potential for year-round supply, consumer preferences for local supply, and the perception that greenhouse production can be more sustainable than traditional production, with more efficient use of resources. New, larger, commercial operations tend to be concentrated around bigger cities to satisfy those local needs. This trend is true in other parts of the world as well, including neighboring Canada. What would greenhouses mean in the Pacific Northwest, if they are broadly adopted?

Continue reading

Check it out: New Resource on Cropland Soils’ Capacity to Store Carbon Through Improved Management

By Georgine Yorgey

Field of recently ploughed soil

The question “How much additional carbon could cropland soils store through improved management?” led to a new resource being developed. Photo: Leslie Michael.

When you work at a land grant university, people sometimes reach out to you with questions.  I love this aspect of my job, as it often gives me a chance to bridge the divide between research and the real world.  In 2019, one of the questions I got most often was “How much additional carbon could cropland soils store through improved management?”

Over the years, we had already worked to gather the available evidence from across the Pacific Northwest region and help managers interpret that evidence.  But these questions provided us an excuse to re-visit the question. Working with colleagues from Washington State University’s Center for Sustaining Agriculture and Natural Resources and the Department of Biological Systems Engineering, we prepared a white paper summarizing the existing experimental and modeling evidence relating to the carbon sequestration potential of cropland soils in the Pacific Northwest. Continue reading

Exploring Whether Washington State Could Become the New California in Vegetable Production

By Fidel Maureira, Ph.D. Candidate, Department of Biological Systems Engineering, Washington State University

Climate variability and change—rising temperatures, more frequent heat waves, drought, less snowpack, pests and diseases, wildfires, and the resulting over-use of resources such as groundwater—are creating critical agricultural production risks for California, the leading vegetable and fruit producing area of the United States. These issues are projected to get worse in the future. In contrast, climate change-related challenges in the Columbia River Basin are projected to be less extreme and there is potential for a more favorable climate for certain agricultural products, providing the Columbia River Basin with relative competitive advantages over California. Can the irrigated areas of Washington State supplement some of the expected losses in vegetable production in California? The answer is not clear yet, but we are exploring the implications of increasing vegetable production in the Basin, using climate change projections and models that quantify how regional hydrology and crops would respond to those climatic changes (Figure 1).

Diagram showing expected changes in vegetable production and certain crops expected in the future, in Washington and California

Figure 1. Vegetable production in California will suffer a reduction in total production because of rising temperatures effects on vegetables and a higher risk of water shortages. In contrast, Washington will show positive conditions in mid-century for growing crops and good supply of water. Can the irrigated areas of Washington State supplement some of the expected losses in vegetable production in California? This could be a beginning of new vegetable production in irrigated areas of Washington. Footnotes refer to references, below.

Continue reading

We Need to Know if Stormwater Runoff in Near-Urban Agricultural Areas Impacts Soil or Plant Health

By Jordan Jobe, Master of Environmental Management,  Washington State University-Puyallup

view of field by a road, with houses and buildings in the far background

The Puyallup Watershed in Washington State has dozens of family farms pinned between townhomes, traffic-dense roads, commuter train tracks, and industrial sites. Photo: Jordan Jobe.

As farmland in the Puyallup Watershed increasingly finds itself pinned between townhomes, traffic-dense roads, commuter train tracks, and industrial sites, it seems important to be aware of unintended impacts on agricultural viability. Today, the Puyallup River floodplain is used in a variety of ways, including residential housing, commercial and industrial uses, salmon habitat (including restoration and mitigation sites), and agricultural production. The floodplain has fertile, rich soil and is home to dozens of farms growing mixed vegetable row crops.

The Puyallup Watershed has around 14,000 acres of active agricultural production, including dozens of family farms in these fertile floodplain areas. However, as land prices skyrocket and development occurs, farmers often have to face difficult decisions about what to do with their land. Continue reading

No-Regrets Strategies that Benefit Ranching Operations and Provide Climate Resilience

By Georgine Yorgey

Ranchers already manage multiple risks—including those related to economics, production, the environment, and weather. Climate change represents an added risk, but one that is challenging to manage because impacts are uncertain, variable over space and time, and often perceived as being only of concern in the distant future (Leiserowitz et al. 2011).

Cattle grazing open rangeland, with forested hills and mountains in the background

Cattle grazing is the main productive activity in the high desert and dry forest landscape of the Bear Valley, near Seneca, Oregon, where our most recent resilience case study is focused. Photo: Jack and Teresa Southworth.

However, despite this challenge, there is a growing recognition that the same strategies that make ranches and rangelands more resilient to climate change will also provide other important co-benefits. These include enhanced resilience to current weather-related variability, enhanced ecological functioning, and in at least some cases, enhanced or more sustainable economic performance.

Implementing these “no-regrets” strategies is thus important for enhancing the resilience of rangelands to a wide variety of shocks including, but not limited to, climate change. Continue reading

Climate Adaptation: USDA Programs and Resources That Can Help

By Paris Edwards, Haley Case-Scott, and Holly R. Prendeville, USDA Northwest Climate Hub

Rural landscape showing flooded fields, roads, and buildings

Figure 1. Drone photo of highway 34 closed near Corvallis, Oregon. 11 April, 2019. Photo: Oregon Department of Transportation under CC BY 2.0.

Whether you are reading the news or talking with your community, the number of stories about how climate change and its impacts affect daily life and business across the Northwest, the United States, and the world is growing. Recently, there have been a number of extreme weather events in the Northwest. In January 2019, central Washington was hit by a blizzard that devastated dairy farmers. In April, Oregon rivers, including the Willamette and Santiam, reached flood stages that caused debris flows, pollution, and lead to evacuations throughout Eugene (Figure 1). Boise, Idaho experienced record rainfall between January and May this year, which contributed to grass growth throughout the region and raised concerns about an increase in wildland fire potential. Fortunately, cooler temperatures prevailed, resulting in a relatively mild wildland fire season and a break from smoke for Idaho, Oregon and Washington. Although it isn’t always clear if a particular event is due to climate change, more frequent and extreme weather occurrences are expected. These current events, alongside disasters of the recent past, highlight what we can expect to see more often in the future, given the predicted increases in flooding, extreme heat events, drought, and wildfire. Such events give added urgency to the need for efforts to reduce negative impacts and support resilience (Jay et al., 2019). Yet it is challenging for producers and natural resource managers to find the resources they need to do so. Continue reading

The Modern Apple Orchard: What Does It Entail?

By Antoinette Avorgbedor, Intern at Washington State University’s Tree Fruit Research and Extension Center and the Center for Sustaining Agriculture and Natural Resources

Small apple trees in a v-trellis system, with bare soil around the line of trees

There has been a steady increase in orchards planted with sparsely branched, thin trees at increased tree planting densities. Photo: Washington State Department of Agriculture under CC BY-NC 2.0.

I have been curious as to why apple trees in modern, commercial orchards don’t look like the cartoon drawing that I grew up seeing with a thick trunk and a wide, round canopy of leaves. Modern tree fruit orchards are planted with a goal of maximizing efficiency and productivity. Mechanized operations are ideal for high-value, large operations to increase profitability. Consequently, there has been a steady increase in sparsely-branched thin trees that are usually more simply pruned. These planting systems are accompanied by increased tree planting densities. Over the last 50 years, densities have increased from 40 trees/acre to in some cases more than 3,000 trees/acre. There are many benefits to this new system of orchard management, but not without a cost to producers. The question is, will the balance of benefits and costs change as the climate changes? Continue reading

Exploring the Frontier of Improved Soil Health in Potato Production in the Columbia Basin

By Athena Loos, Field Representative, McCain FoodsText linking soil health and climate change, and link to a previous article on the topic

During the 3.5 years that I have worked with growers in my role as a Field Representative with McCain Foods, I have met numerous growers who are playing an active role in exploring the biological component of soil health. (Growers generally have a good understanding of the chemical and physical characteristics of our soils.) One of my graduate projects was focused on soil health in the Columbia Basin, which allowed me to gain knowledge on this topic and have these discussions with growers. Farmers essentially are among the most committed environmentalists. The last thing they want to do is ruin the soil they depend on for their livelihood. If you ask around the Basin, you will find that land has been passed on through generations. This is a big motivation for growers to improve soil health; soil is a bank account for future generations.

Continue reading

Are Efficient Irrigation Technologies a Winning Solution in the Yakima River Basin?

By Keyvan Malek, Civil and Environmental Engineering at Cornell University

In an earlier AgClimate.net article I discussed studies that have looked into the effects of investments in efficient irrigation technology on other water-related sectors. I argued that many studies have concluded that such investments might have negative implications for other water users, such as farmers or energy producers. I also mentioned that we were studying this issue, and promised to report our findings. This article and our soon-to-be-published paper deliver on that promise.

Why we did what we did 

Closeup of a drip irrigation line, with a drop of water falling onto soil covered with crop residue

Questions still remain around the impacts across a basin and for multiple water use sectors of more efficient irrigation systems, such as drip irrigation. Photo: Joby Elliott under CC BY 2.0.

Among agro-hydrologists—people who study the dynamics of water in agricultural systems—it is a widely accepted fact that one farmer’s investment in new, irrigation efficiency technologies negatively affects other farmers and sectors. However, questions remain, as past studies have not explicitly quantified the impacts of new irrigation systems on other sectors. What is the implication for overall agricultural productivity? How do efficient systems impact the ecological condition of the basin? How do energy production and demand change as people switch to more efficient systems? Are there any social implications? And do these productivity, ecological, and social implications change as the climate changes? Continue reading

Soil Health in Potato Production: Oxymoron or Opportunity?

By Karen Hills

A frequently used—at least, by soil scientists—definition for soil health is “the continued capacity of soil to function as a vital living system […] to sustain biological productivity, maintain the quality of air and water environments, and promote plant, animal, and human health” (Doran et al. 1996). Many different indicators—chemical, physical, and biological—are used to assess soil health.

Potato field with two harvesters and two trucks

Figure 1. Potatoes are economically important crops in many irrigated areas of the Pacific Northwest. Here, potatoes are harvested near Pasco, Washington. Photo: Athena Loos.

Growing potatoes is notoriously hard on the physical and biological health of soil (Figure 1). Potato production in many areas of the Pacific Northwest involves seven or more soil disturbance operations, leaves little residue on the field, and often involves the use of fumigants to control soilborne diseases. The economics of potato production often drive growers to utilize short rotations. But a suite of strategies are possible to improve soil health in potato production, including cover crops, rotating with perennial crops and crops that contribute high levels of residues, and incorporation of organic amendments. While growing green manure crops for biofumigation has probably achieved the most success and adoption in the region (see producer Dale Gies as an example), in this article I focus on a more challenging strategy that has received limited attention, but may have more direct climate change implications: tillage reduction. Continue reading