Category Archives: Sustainable Practices

Exploring the Nexus of Solar Energy and Agriculture: How Do We Invest in Climate-Friendly Energy While Ensuring the Future of our Food Supply?

By Addie Candib and Chantel Welch, American Farmland Trust

Series of solar panels over bare ground

By 2050, 90% of solar energy is expected to come from utility-scale projects in rural communities (Ardani et al. 2021). Photo: Camille Seamann/Solutions Project under CC BY 2.0

Given ambitious state and federal goals for reducing greenhouse gas emissions, the pace of solar energy development is accelerating rapidly in the Pacific Northwest, placing significant pressure on the region’s agricultural land and its stewards. According to a US Department of Energy study, by 2050, 90% of solar energy will come from utility-scale projects in rural communities (Ardani et al. 2021). Our team at American Farmland Trust (AFT) recently looked specifically at solar development as a contributor to farmland loss (Hunter et al. 2022). In addition to the nearly 200,000 acres at risk of conversion to urban and low-density residential development, Washington State could lose as many as 86,000 acres to solar development by 2040 (Figure 1).  We estimate that about 80% of that development – or 68,800 acres – will occur on agricultural land. While this may not sound like a lot given Washington’s vast agricultural landscape, it’s equal to or more than the total acreages used by some flagship crops: barley (70,000 acres), hops (43,000 acres), cherries (39,000 acres), or onions (19,000 acres).

 The opportunity to lease land to solar developers may have considerable appeal for a farmland owner given the many challenges that face our region’s producers: unstable commodity markets, rising property values, labor shortages, climate change, and lack of successors, just to name a few. But solar leases also carry significant risk for the landowner and for the land. Here we discuss two approaches AFT is taking to help ensure that the interests and values of agricultural lands and landowners are equitably considered at all levels of decisions around solar development. Continue reading

Deficit Irrigation Can Improve Fruit Quality for Hard Cider Producers

By Sarah Davis, Intern at Washington State University’s Tree Fruit Research and Extension Center and the Center for Sustaining Agriculture and Natural Resources

Apple trees with fruit on the branches, green foliage

Cider apples in mid August under RDI treatment. Photo: Sarah Davis.

Growing up, I remember my grandfather bringing my family fresh Honeycrisp apples from his orchard in the Chelan area, describing the qualities that made them special. As an orchardist, my grandfather always strived to have delicious, high-quality produce coming from his orchards. My grandfather is not alone in this quest; growers across the state are looking for ways to enhance the quality of their crops. As climate change progresses and temperatures rise, fruit quality could be affected: climate change has been linked to delayed fruit ripening, low fruit quality, low fruit yield, sunburn, and more.  Regulated deficit irrigation (RDI) is one possible way to combat some of these impacts. Continue reading

Deficit Irrigation Conserves Water in Agriculture to Aid in Combating Water Stress

By Sarah Davis, Intern at Washington State University’s Tree Fruit Research and Extension Center and the Center for Sustaining Agriculture and Natural Resources

A group of red apples, showing a sticker labeling them from Chelan

Washington state produce can be found in supermarkets across the world. These Chelan apples were found in Kuala Lumpur. Photo: Flickr user Dennis Sylvester Hurd, under CC0 1.0 Universal

Washington State has nearly 15 million acres of farmland with around 39,000 operating farms, each producing necessary agricultural commodities. A few of the most well-known crops that are produced and distributed from Washington State are apples, cherries, hops, raspberries, and pears. Even when traveling across the country, I can find Chelan apples, which shows just how productive the state is in their cultivation of high value foods. Many of the 39,000 operating farms require irrigation to produce much of the aforementioned fruit that get distributed far and wide, which consumes a large portion of water resources. Continue reading

Challenges with Renewable Energy and How Biofuels Can Help

By Janelle Christensen, MESM, ORISE Science Communication fellow for the USDA Northwest Climate Hub

Wind turbines over a grassland with livestock

Renewable energy like wind power could help to reduce some of the biggest impacts from climate change. Photo: NRCS Montana.

In the face of climate change, much of the world looks to renewable energy. It offers the promise of preventing some of the worst impacts from climate change while allowing us to continue to live similar to how we do currently. Although we need to change how we live in addition to using renewables, without them, we would need to completely revert to pre-industrial times. However, I can guarantee that as I write this on my laptop in my air-conditioned house at my remote job that that is out of the question. With a power grid that runs off clean energy, the changes and reductions we make in our day-to-day lives have a larger impact. If we choose public transportation over driving, it makes a bigger difference if that train runs off a renewable energy powered grid. If we change to more efficient, long-lasting light bulbs and we use solar to power those bulbs, we are wasting less and not emitting carbon dioxide to power our house. The combination of action and renewables is powerful, but switching to 100% renewable energy has some challenges. Continue reading

Our Five-Year Mission … to Boldly Go Where No Integrated Model Has Gone Before

By David I. Gustafson, Adjunct Research Faculty at Washington State University

This article is part of a series, Climate Friendly Fruit & Veggies, highlighting work from the Fruit & Vegetable Supply Chains: Climate Adaptation & Mitigation Opportunities (F&V CAMO) project, a collaborative research study that was co-led by investigators at the University of Florida and the Agriculture & Food Systems Institute. Other collaborators included researchers at the University of Arkansas, University of Illinois, the International Food Policy Research Institute, the World Agricultural Economic and Environmental Services, and Washington State University. This project identified and tested climate adaptation and mitigation strategies in fruit and vegetable supply chains.

Star ship flying around a planet

Figure 1. Still image from the original Star Trek TV series. Source: Maurice Mitchell (https://www.thegeektwins.com/2019/10/every-star-trek-opening-theme-song.html)

As a child of the sixties, I can still remember our family sitting together to watch the coolest show on television, Star Trek (Figure 1). Every episode began with these poetic words: “Space: the final frontier. These are the voyages of the starship Enterprise. Its five-year mission: to explore strange new worlds. To seek out new life and new civilizations. To boldly go where no man has gone before!”

These words came to mind as I reflect on the conclusion of our five-year project to develop and apply the powerful tools of integrated modeling for a unique purpose: to identify climate adaptation and mitigation opportunities in U.S. fruit and vegetable (F&V) supply chains. Continue reading

A Cornucopia of Opportunities for Domestic Produce

By David I. Gustafson, Adjunct Research Faculty at Washington State University

This article is part of a series, Climate Friendly Fruit & Veggies, highlighting work from the Fruit & Vegetable Supply Chains: Climate Adaptation & Mitigation Opportunities (F&V CAMO) project, a collaborative research study co-led by investigators at the University of Florida and the Agriculture & Food Systems Institute. Other collaborators include researchers at the University of Arkansas, University of Illinois, the International Food Policy Research Institute, the World Agricultural Economic and Environmental Services, and Washington State University. This project seeks to identify and test climate adaptation and mitigation strategies in fruit and vegetable supply chains.

A pile of fresh vegetables, including carrots, potatoes, leafy greens and leeks

Eat your fruit and vegetables. Can farmers grow the necessary produce for all Americans to each five servings of fruits and vegetables daily? Photo: Shiela Sund under CC BY 2.0.

Most of our moms urged us to “eat our fruits and vegetables,” and multiple studies confirm this motherly advice. For instance, the U.S. National Institutes of Health recently reported that consuming more fruits and vegetable results in reduced mortality. Unfortunately, the same report tells us what we already know: most Americans don’t consume anywhere near the five servings a day needed for maximum health benefits.

But what if we did? Could America’s farmers grow all of that additional produce? Continue reading

ANNOUNCEMENT: SoilCon is Returning in February 2022! Register Today

Logo. SoilCon: Washington Soil Health Week, February 22-23, 2023 #WASoilConThe Washington State Soil Health Initiative, with support from Western Sustainable Agriculture Research and Education, is proud to announce that SoilCon is returning in 2022. This virtual conference will bring research, extension, and production together to discuss soil health parameters at a local, regional, and global scale. The conference will be held February 22nd & 23rd, with sessions from 8:00am-12:00pm PST each day.

Continue reading

Get out the Map! A Soil Health Roadmap for Washington

By Karen Hills, Center for Sustaining Agriculture and Natural Resources, Washington State University

Two hands holding a handful of dark soil

Maintaining and improving soil health can result in benefits both on- and off-farm. Photo: Chad Kruger.

Soil has been called “the living skin of the Earth.” The effort to maintain the health of this “living skin” in Washington got a boost in 2021 when the State Legislature passed the Washington Soil Health Initiative with a $2.1 million annual allocation (half of which goes to Washington State University). Washington State is just one of many states in the U.S. where interest in soil health has resulted in initiatives focused on maintaining soil health on working lands, but, notably, no other state’s soil health initiative is investing as much into research as Washington’s. Soil health is defined by the USDA NRCS as “…the continued capacity of soil to function as a vital living ecosystem that sustains plants, animals, and humans.” Soil health is often described as a “win-win” with positive outcomes both on-farm and off-farm. For example, on-farm benefits include improved soil tilth, nutrient cycling, water holding capacity, and disease suppression. Off-farm benefits include reduced soil erosion and improved water quality, as well as reducing the impact on our climate, most directly through carbon sequestration.

The win-win nature of soil health allowed the Washington Soil Health Initiative to gain support from commodity groups in Washington as well as environmental organizations. Continue reading

Would You Lease Your Water Rights? The Devil Is in the Details

By Nicole Bell, Center for Sustaining Agriculture and Natural Resources, Washington State University

 

Center pivot irrigation system in a bare field with crop starting to emerge

Irrigation water supply in eastern Washington relies on snowmelt, which is expected to change as temperatures warm. Photo: Flickr user brewbooks under CC BY-SA 2.0.

Climate change is expected to alter both the availability and demand for water. In the western United States, roughly 80% of surface water is allocated to agricultural uses, and the pressure to find more efficient ways to manage water is on, especially in drought years. Eastern Washington is no exception: the mountains in this region are relatively low in elevation, meaning that as the region warms, temperatures will cross that 32°F threshold more frequently, more precipitation will fall as rain rather than as snow, and snowmelt will occur earlier. Because the Pacific Northwest relies on snowpack for much of its summer water supply, this could create challenges for managing water. While previous articles have focused on the likely timing and availability of water in the Columbia River Basin, in this article I focus on water markets, or the transfer or leasing of water and water rights from one user to another. These markets provide a tool that could potentially help reallocate water to where it is critically needed during times of shortage. Continue reading

Here’s the Dirt on Carbon Sequestration Potential in Cropland Soils

By Nicole Bell, Center for Sustaining Agriculture and Natural Resources, Washington State University

Aerial view of green and dry center pivot circles with the Columbia River in the background

Soils with carbon sequestration potential can include irrigated croplands in the Columbia River Basin. Photo: Doug Wilson/USDA ARS

In this era with record-setting temperatures multiple years in a row, scientists are looking for methods to sequester carbon to slow the process of climate change. Agriculture plays a key role in not just the global economy, but also the global carbon cycle: cropland soils have the potential to be either sinks or sources of greenhouse gases, notably carbon dioxide. The conversion of native ecosystems to cropland agriculture has resulted in enormous carbon losses, estimated to be between 20-70% of the original carbon stored in native soils in the US. The Pacific Northwest is an agricultural powerhouse: in 2017, Washington, Idaho, and Oregon produced $22 billion in agricultural production on over 42 million acres. That’s a lot of soil. I recently read a white paper by Georgine Yorgey and colleagues at Washington State University titled “Carbon sequestration potential in cropland soils in the inland Pacific Northwest: Knowledge and gaps,” that summarizes research on carbon sequestration in the inland Northwest. It turns out that it is not a one-size-fits-all answer: the potential of certain croplands to either release or sequester carbon depends on climate, the cropping system, the soil type, and other factors. Fortunately, though, some soils do have great carbon sequestration potential. Continue reading