Category Archives: Sustainable Practices

Compost Emissions – More Than Just a Matter of Smell

By Karen Hills

This is part of a series highlighting work by Washington State University (WSU) researchers through the Waste to Fuels Technology Partnership between the Department of Ecology and WSU during the 2017-2019 biennium. This partnership advances targeted applied research and extension on emerging technologies for managing residual organic matter.

Large compost pile, with facility in the background

Commercial compost facilities divert organic waste from landfills and create a beneficial soil amendment. Photo: Doug Collins.

Composting organic waste is, in many ways, a win-win scenario. It diverts waste from the landfill, while creating a valuable soil amendment. However, even composting is not without its share of environmental impacts. Large commercial composters know that emissions of smelly compounds can occur and cause unhappy neighbors. But little attention has been paid to less noticeable compounds which could have climate and air quality impacts. But how much is known about the emissions of these compounds from composting operations? Reading a recently published report by Tom Jobson and Neda Khosravi of WSU’s Laboratory for Atmospheric Research helped me to better grasp the state of the science on this question. Continue reading

Municipal Compost Use in Agriculture: A Question of Cost and Value

By Karen Hills

This is part of a series highlighting work by Washington State University (WSU) researchers through the Waste to Fuels Technology Partnership between the Department of Ecology and WSU during the 2017-2019 biennium. This partnership advances targeted applied research and extension on emerging technologies for managing residual organic matter.

 

Pile of organic material surrounded by earth-looking compost piles

Figure 1. Composting organic waste diverts this material from landfills and yields a product that improves soil properties. Photo: DVO, Inc.

Composting rather than landfilling organic waste, such as food waste and yard trimmings, has several benefits from a climate perspective. A recent study in Washington concluded that composting organic waste likely decreases greenhouse gas emissions from organic waste compared to landfilling (Jobson and Khosravi, 2019). Other benefits of composting organic waste include saving space in landfills, and producing a valuable organic product that can improve soil properties when applied to the landscape.

The expansion of municipal composting programs has led to an increased supply of compost in many areas, including around Seattle, Washington. Agriculture could provide an outlet for large volumes of this compost. However, despite the increased supply of municipal compost, the interest from farmers in using it seems to have lagged. I was part of a project team at Washington State University that drilled into this question further, particularly the potential value of compost in agriculture. Continue reading

Dry Farming Gains Ground in the Northwest

By Paris Edwards, USDA Northwest Climate Hub and Amy Garrett, Oregon State University Extension

Rows of densely covered vegetable crops, with a row of trees in the background

Dry farming trial at the Oregon State University Oak Creek Center for Urban Horticulture. Photo: Amy Garrett, taken on July 27th, 2020.

In parts of the maritime Pacific Northwest, climate conditions work well for dry farming, a set of soil preparation and management techniques that allow for growing food with little to no supplemental water. Dry farming has a long history of practice in the West, but a recent resurgence in popularity can be linked to water access challenges, drought, and uncertain future climate conditions. Dry farming fruits and vegetables requires a set of techniques that are evolving as the global network and local community of experts continues to expand and innovate together. So how is the reemergence of dry farming in the Northwest unfolding, and what does it have to offer growers and consumers? Continue reading

Climate Change and Downy Brome in Pacific Northwest Dryland Agriculture

 Q&A with Weed Scientist Dr. Ian C. Burke

Two headshots

Ian Burke (top) and Doug Finkelnburg (bottom).

By Doug Finkelnburg, Area Extension Educator, Cropping Systems, University of Idaho Extension

In the book “Advances in Dryland Farming in the Inland Pacific Northwest”, the common weed downy brome or “cheatgrass” is identified as potentially problematic for wheat producers as the climate changes. Downy brome is projected to head earlier in the season and expand its present occupied acreage. Such changes are happening concurrently to broader herbicide resistances being found in Pacific Northwest downy brome populations, a combination that puts increased pressure on weed managers. Curious how these issues interacted, I asked Dr. Ian Burke, Washington State University Weed Scientist and lead author of the Advances chapter “Integrated weed management” about how climate change and herbicide resistance will affect downy brome management. Continue reading

Greenhouse Production of Vegetables: Implications for the Region

By Fidel Maureira, Ph.D. Candidate, Department of Biological Systems Engineering, Washington State University

Dense rows of pepper plants in a greenhouse, on either side of a set of rails

Figure 1. Greenhouse production facility for bell peppers. Photo: Fidel Maureira.

Greenhouse agricultural production currently accounts for 1 to 2% of the agricultural production in the Unites States, but is rapidly growing. The value of this greenhouse production has increased 44% in the last years, and the number of operators has gone up by 71%. Large retailers have a significant interest in this technology, given the benefits of consistency in quality, flavor, and production volume, the potential for year-round supply, consumer preferences for local supply, and the perception that greenhouse production can be more sustainable than traditional production, with more efficient use of resources. New, larger, commercial operations tend to be concentrated around bigger cities to satisfy those local needs. This trend is true in other parts of the world as well, including neighboring Canada. What would greenhouses mean in the Pacific Northwest, if they are broadly adopted?

Continue reading

Check it out: New Resource on Cropland Soils’ Capacity to Store Carbon Through Improved Management

By Georgine Yorgey

Field of recently ploughed soil

The question “How much additional carbon could cropland soils store through improved management?” led to a new resource being developed. Photo: Leslie Michael.

When you work at a land grant university, people sometimes reach out to you with questions.  I love this aspect of my job, as it often gives me a chance to bridge the divide between research and the real world.  In 2019, one of the questions I got most often was “How much additional carbon could cropland soils store through improved management?”

Over the years, we had already worked to gather the available evidence from across the Pacific Northwest region and help managers interpret that evidence.  But these questions provided us an excuse to re-visit the question. Working with colleagues from Washington State University’s Center for Sustaining Agriculture and Natural Resources and the Department of Biological Systems Engineering, we prepared a white paper summarizing the existing experimental and modeling evidence relating to the carbon sequestration potential of cropland soils in the Pacific Northwest. Continue reading

Exploring Whether Washington State Could Become the New California in Vegetable Production

By Fidel Maureira, Ph.D. Candidate, Department of Biological Systems Engineering, Washington State University

Climate variability and change—rising temperatures, more frequent heat waves, drought, less snowpack, pests and diseases, wildfires, and the resulting over-use of resources such as groundwater—are creating critical agricultural production risks for California, the leading vegetable and fruit producing area of the United States. These issues are projected to get worse in the future. In contrast, climate change-related challenges in the Columbia River Basin are projected to be less extreme and there is potential for a more favorable climate for certain agricultural products, providing the Columbia River Basin with relative competitive advantages over California. Can the irrigated areas of Washington State supplement some of the expected losses in vegetable production in California? The answer is not clear yet, but we are exploring the implications of increasing vegetable production in the Basin, using climate change projections and models that quantify how regional hydrology and crops would respond to those climatic changes (Figure 1).

Diagram showing expected changes in vegetable production and certain crops expected in the future, in Washington and California

Figure 1. Vegetable production in California will suffer a reduction in total production because of rising temperatures effects on vegetables and a higher risk of water shortages. In contrast, Washington will show positive conditions in mid-century for growing crops and good supply of water. Can the irrigated areas of Washington State supplement some of the expected losses in vegetable production in California? This could be a beginning of new vegetable production in irrigated areas of Washington. Footnotes refer to references, below.

Continue reading

We Need to Know if Stormwater Runoff in Near-Urban Agricultural Areas Impacts Soil or Plant Health

By Jordan Jobe, Master of Environmental Management,  Washington State University-Puyallup

view of field by a road, with houses and buildings in the far background

The Puyallup Watershed in Washington State has dozens of family farms pinned between townhomes, traffic-dense roads, commuter train tracks, and industrial sites. Photo: Jordan Jobe.

As farmland in the Puyallup Watershed increasingly finds itself pinned between townhomes, traffic-dense roads, commuter train tracks, and industrial sites, it seems important to be aware of unintended impacts on agricultural viability. Today, the Puyallup River floodplain is used in a variety of ways, including residential housing, commercial and industrial uses, salmon habitat (including restoration and mitigation sites), and agricultural production. The floodplain has fertile, rich soil and is home to dozens of farms growing mixed vegetable row crops.

The Puyallup Watershed has around 14,000 acres of active agricultural production, including dozens of family farms in these fertile floodplain areas. However, as land prices skyrocket and development occurs, farmers often have to face difficult decisions about what to do with their land. Continue reading

No-Regrets Strategies that Benefit Ranching Operations and Provide Climate Resilience

By Georgine Yorgey

Ranchers already manage multiple risks—including those related to economics, production, the environment, and weather. Climate change represents an added risk, but one that is challenging to manage because impacts are uncertain, variable over space and time, and often perceived as being only of concern in the distant future (Leiserowitz et al. 2011).

Cattle grazing open rangeland, with forested hills and mountains in the background

Cattle grazing is the main productive activity in the high desert and dry forest landscape of the Bear Valley, near Seneca, Oregon, where our most recent resilience case study is focused. Photo: Jack and Teresa Southworth.

However, despite this challenge, there is a growing recognition that the same strategies that make ranches and rangelands more resilient to climate change will also provide other important co-benefits. These include enhanced resilience to current weather-related variability, enhanced ecological functioning, and in at least some cases, enhanced or more sustainable economic performance.

Implementing these “no-regrets” strategies is thus important for enhancing the resilience of rangelands to a wide variety of shocks including, but not limited to, climate change. Continue reading

Climate Adaptation: USDA Programs and Resources That Can Help

By Paris Edwards, Haley Case-Scott, and Holly R. Prendeville, USDA Northwest Climate Hub

Rural landscape showing flooded fields, roads, and buildings

Figure 1. Drone photo of highway 34 closed near Corvallis, Oregon. 11 April, 2019. Photo: Oregon Department of Transportation under CC BY 2.0.

Whether you are reading the news or talking with your community, the number of stories about how climate change and its impacts affect daily life and business across the Northwest, the United States, and the world is growing. Recently, there have been a number of extreme weather events in the Northwest. In January 2019, central Washington was hit by a blizzard that devastated dairy farmers. In April, Oregon rivers, including the Willamette and Santiam, reached flood stages that caused debris flows, pollution, and lead to evacuations throughout Eugene (Figure 1). Boise, Idaho experienced record rainfall between January and May this year, which contributed to grass growth throughout the region and raised concerns about an increase in wildland fire potential. Fortunately, cooler temperatures prevailed, resulting in a relatively mild wildland fire season and a break from smoke for Idaho, Oregon and Washington. Although it isn’t always clear if a particular event is due to climate change, more frequent and extreme weather occurrences are expected. These current events, alongside disasters of the recent past, highlight what we can expect to see more often in the future, given the predicted increases in flooding, extreme heat events, drought, and wildfire. Such events give added urgency to the need for efforts to reduce negative impacts and support resilience (Jay et al., 2019). Yet it is challenging for producers and natural resource managers to find the resources they need to do so. Continue reading