Category Archives: Sustainable Practices

Climate Adaptation: USDA Programs and Resources That Can Help

By Paris Edwards, Haley Case-Scott, and Holly R. Prendeville, USDA Northwest Climate Hub

Rural landscape showing flooded fields, roads, and buildings

Figure 1. Drone photo of highway 34 closed near Corvallis, Oregon. 11 April, 2019. Photo: Oregon Department of Transportation under CC BY 2.0.

Whether you are reading the news or talking with your community, the number of stories about how climate change and its impacts affect daily life and business across the Northwest, the United States, and the world is growing. Recently, there have been a number of extreme weather events in the Northwest. In January 2019, central Washington was hit by a blizzard that devastated dairy farmers. In April, Oregon rivers, including the Willamette and Santiam, reached flood stages that caused debris flows, pollution, and lead to evacuations throughout Eugene (Figure 1). Boise, Idaho experienced record rainfall between January and May this year, which contributed to grass growth throughout the region and raised concerns about an increase in wildland fire potential. Fortunately, cooler temperatures prevailed, resulting in a relatively mild wildland fire season and a break from smoke for Idaho, Oregon and Washington. Although it isn’t always clear if a particular event is due to climate change, more frequent and extreme weather occurrences are expected. These current events, alongside disasters of the recent past, highlight what we can expect to see more often in the future, given the predicted increases in flooding, extreme heat events, drought, and wildfire. Such events give added urgency to the need for efforts to reduce negative impacts and support resilience (Jay et al., 2019). Yet it is challenging for producers and natural resource managers to find the resources they need to do so. Continue reading

The Modern Apple Orchard: What Does It Entail?

By Antoinette Avorgbedor, Intern at Washington State University’s Tree Fruit Research and Extension Center and the Center for Sustaining Agriculture and Natural Resources

Small apple trees in a v-trellis system, with bare soil around the line of trees

There has been a steady increase in orchards planted with sparsely branched, thin trees at increased tree planting densities. Photo: Washington State Department of Agriculture under CC BY-NC 2.0.

I have been curious as to why apple trees in modern, commercial orchards don’t look like the cartoon drawing that I grew up seeing with a thick trunk and a wide, round canopy of leaves. Modern tree fruit orchards are planted with a goal of maximizing efficiency and productivity. Mechanized operations are ideal for high-value, large operations to increase profitability. Consequently, there has been a steady increase in sparsely-branched thin trees that are usually more simply pruned. These planting systems are accompanied by increased tree planting densities. Over the last 50 years, densities have increased from 40 trees/acre to in some cases more than 3,000 trees/acre. There are many benefits to this new system of orchard management, but not without a cost to producers. The question is, will the balance of benefits and costs change as the climate changes? Continue reading

Exploring the Frontier of Improved Soil Health in Potato Production in the Columbia Basin

By Athena Loos, Field Representative, McCain FoodsText linking soil health and climate change, and link to a previous article on the topic

During the 3.5 years that I have worked with growers in my role as a Field Representative with McCain Foods, I have met numerous growers who are playing an active role in exploring the biological component of soil health. (Growers generally have a good understanding of the chemical and physical characteristics of our soils.) One of my graduate projects was focused on soil health in the Columbia Basin, which allowed me to gain knowledge on this topic and have these discussions with growers. Farmers essentially are among the most committed environmentalists. The last thing they want to do is ruin the soil they depend on for their livelihood. If you ask around the Basin, you will find that land has been passed on through generations. This is a big motivation for growers to improve soil health; soil is a bank account for future generations.

Continue reading

Are Efficient Irrigation Technologies a Winning Solution in the Yakima River Basin?

By Keyvan Malek, Civil and Environmental Engineering at Cornell University

In an earlier AgClimate.net article I discussed studies that have looked into the effects of investments in efficient irrigation technology on other water-related sectors. I argued that many studies have concluded that such investments might have negative implications for other water users, such as farmers or energy producers. I also mentioned that we were studying this issue, and promised to report our findings. This article and our soon-to-be-published paper deliver on that promise.

Why we did what we did 

Closeup of a drip irrigation line, with a drop of water falling onto soil covered with crop residue

Questions still remain around the impacts across a basin and for multiple water use sectors of more efficient irrigation systems, such as drip irrigation. Photo: Joby Elliott under CC BY 2.0.

Among agro-hydrologists—people who study the dynamics of water in agricultural systems—it is a widely accepted fact that one farmer’s investment in new, irrigation efficiency technologies negatively affects other farmers and sectors. However, questions remain, as past studies have not explicitly quantified the impacts of new irrigation systems on other sectors. What is the implication for overall agricultural productivity? How do efficient systems impact the ecological condition of the basin? How do energy production and demand change as people switch to more efficient systems? Are there any social implications? And do these productivity, ecological, and social implications change as the climate changes? Continue reading

Soil Health in Potato Production: Oxymoron or Opportunity?

By Karen Hills

A frequently used—at least, by soil scientists—definition for soil health is “the continued capacity of soil to function as a vital living system […] to sustain biological productivity, maintain the quality of air and water environments, and promote plant, animal, and human health” (Doran et al. 1996). Many different indicators—chemical, physical, and biological—are used to assess soil health.

Potato field with two harvesters and two trucks

Figure 1. Potatoes are economically important crops in many irrigated areas of the Pacific Northwest. Here, potatoes are harvested near Pasco, Washington. Photo: Athena Loos.

Growing potatoes is notoriously hard on the physical and biological health of soil (Figure 1). Potato production in many areas of the Pacific Northwest involves seven or more soil disturbance operations, leaves little residue on the field, and often involves the use of fumigants to control soilborne diseases. The economics of potato production often drive growers to utilize short rotations. But a suite of strategies are possible to improve soil health in potato production, including cover crops, rotating with perennial crops and crops that contribute high levels of residues, and incorporation of organic amendments. While growing green manure crops for biofumigation has probably achieved the most success and adoption in the region (see producer Dale Gies as an example), in this article I focus on a more challenging strategy that has received limited attention, but may have more direct climate change implications: tillage reduction. Continue reading

What You Need to Know About Fruit Acclimation to Heat Stress

By Antoinette Avorgbedor

Intern at Washington State University’s Tree Fruit Research and Extension Center and the Center for Sustaining Agriculture and Natural Resources

Looking along grape vine rows, with arid hills in the background

Agriculture in arid conditions can be challenging for fruit development. Could acclimation help with those challenges? Photo: Cliff Hellis, under CC BY-NC-ND 2.0.

Did you know that people indigenous to the hotter equatorial regions have much lower sweat rates than people in cooler regions of the world? Similar to the ability of the human body to adjust to different climatic conditions, plants have evolved various mechanisms to survive extreme weather conditions. Besides long-term evolutionary modifications, plants have been found to develop quick short-term tolerance to extreme environmental conditions. Many different plant species have been reported to develop “memory” to stress, which then helps protect against future adverse conditions. I found this topic pretty interesting. What types of benefits could be derived from a deeper understanding of how plants “acclimate” when experiencing physical stress factors? And could understanding this ability be useful for improving their tolerance to stress, so they can avoid some of the impacts of stress on fruit production? Continue reading

Sweat the Small Stuff, Like the Hessian Fly

By Doug Finkelnburg

Female Hessian fly laying an egg on a wheat leaf

Hessian fly, a modest pest of Pacific Northwest wheat, with potentially big impacts as the climate changes. Photo: Scott Bauer/USDA Agricultural Research Service under CC BY 3.0 US.

As climate change is occupying more space in public discourse, it is easy to focus on the attention-grabbing headlines about loss of sea ice, warming oceans, and more intense and frequent wildfires. Often overlooked are the seemingly subtle effects a changing climate presents and the ramifications these subtle changes can have. For example, let us discuss a modest pest of Pacific Northwest wheat, the Hessian fly. Continue reading

How Suitable is Apple Orchard Netting as a Sunburn Control Measure?

By Antoinette Avorgbedor

Intern at Washington State University’s Tree Fruit Research and Extension Center and the Center for Sustaining Agriculture and Natural Resources

More likely than not, you have passed large apple orchards in your travels around the Pacific Northwest area and observed nets spanning wide areas of apple trees. Sometimes the entire top and all the sides of orchards are enclosed. A 2017 survey conducted in Washington State to assess the extent of netting found that about 5% of the surveyed acres were under nets and an additional 7% was estimated to be added in 2018 (Mupambi et al. 2019). Intuitively, you think nets are supposed to keep pests and trespassers out. At least, that is what I thought when I first saw an apple orchard covered with netting. That happens to be only a secondary reason for which tree fruit growers invest in such extensive enclosing techniques. A whopping 98.3% of the growers surveyed indicated that sunburn reduction was one of their most important reasons for using netting (the survey allowed growers to choose multiple reasons). I couldn’t help but wonder: What does this growing popularity of shade netting mean for the future of apple sunburn control?

Green apples with golden brown or dark brown patches on the skin

Sunburn in Granny Smith apples. Photos: I. Hanrahan and M. Mendoza. Reproduced with permission, from Mupambi et al. 2019.

Continue reading

Check it out: The Black Box of Soil Organic Matter and Soil Health

By Sonia A. Hall

Two men bent over a shovelful of soil in a harvested wheat field.

The connection between soil health and carbon sequestration are complex, but advances in soil biology are teasing them out. Photo: Ron Nichols/USDA NRCS under CC BY 2.0.

A number of recent AgClimate.net articles focused on soil health (see for example this article on a soil health NRCS resource  and one on decomposition of wheat residues research). These articles commented on why soil health is important from a climate change perspective: more carbon-rich organic matter in the soil contributes to soil health, and also means less carbon as carbon dioxide in the atmosphere. So the potential exists for a win-win situation. As most things in life and agriculture, the connections between improved soil health and increased carbon sequestration are not as simple as they sound. Check out Andy McGuire’s elegant blog article describing why advances in soil biology—a foundational component of soil health—are important. He explains that it is not because they “change everything,” but because they help clarify why some things work and some don’t as much, and explain how complex that connection between soil health and carbon sequestration in soils appears to be. And though we may not want to hear it, we need this understanding to determine where the win-win practices that both increase soil health and sequester more carbon might realistically be. So take a few minutes to read McGuire’s article—it’s well worth the time!

What is Ocean Acidification? Should We Worry About It?

By Laurie Houston

A pile of oysters.

Oysters, an important industry in the Pacific Northwest, is vulnerable to ocean acidification. Photo: Steve Freeman under CC BY 2.0

I recently enlisted colleagues to write a blog article about the impact carbon dioxide emissions have on the Pacific Northwest oyster aquaculture industry. While reviewing the blog I realized that ocean acidification is probably a little-understood feature for many of us.  Therefore, I went in search of articles and videos that explain the science of ocean acidification, and its impact on ecosystems and economies. Continue reading