Category Archives: Impacts & Adaptation

The Forest Service’s Climate Adaptation Publication is a Worthy Resource for All Landowners

By Chris Schnepf

The cover of the General Technical Report

Halofsky, Jessica E.; Peterson, David L.; Dante-Wood, S. Karen; Hoang, Linh; Ho, Joanne J.; Joyce, Linda A., eds. 2018. Climate change vulnerability and adaptation in the Northern Rocky Mountains (Parts 1 and 2). Gen. Tech. Rep. RMRS-GTR-374. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.

Foresters were among the first to start thinking about the possible effects of climate change, in part because of the long-term nature of forests—foresters commonly reflect on management issues on 50 or even 150-year time scales. Because forests are also highly valued for other benefits in addition to commodity production (i.e., wood), those managing forests are also particularly aware of the long-term effects of their management on water, wildlife, soil, and other ecosystem benefits.

One of the best examples of that broad, long, view is a recent new publication titled “Climate Change Vulnerability and Adaptation in the Northern Rocky Mountains,” a two-part, 495-page document produced by the USDA Forest Service). The publication is the result of a process that had extensive involvement from Forest Service personnel, non-governmental partners, and universities in a series of 2- and 3-day workshops throughout the Northern Region of the Forest Service (including one in Coeur d’Alene, Idaho). Continue reading

What is Ocean Acidification? Should We Worry About It?

By Laurie Houston

A pile of oysters.

Oysters, an important industry in the Pacific Northwest, is vulnerable to ocean acidification. Photo: Steve Freeman under CC BY 2.0

I recently enlisted colleagues to write a blog article about the impact carbon dioxide emissions have on the Pacific Northwest oyster aquaculture industry. While reviewing the blog I realized that ocean acidification is probably a little-understood feature for many of us.  Therefore, I went in search of articles and videos that explain the science of ocean acidification, and its impact on ecosystems and economies. Continue reading

Check it out: New Resource for Healthy Soils and Climate Resilience

By Gabrielle Roesch-McNally

Hand holding a clod of soil full of roots and worms

Healthy soils can build greater resilience and reduce risks in the face of more extreme and variable weather. Photo: Aaron Roth/NRCS under CC BY-ND 2.0.

Climate change is expected to increase the vulnerability of our agriculture and natural resource systems. In the face of more extreme and variable weather, there are a suite of soil health management practices that land managers can adopt to build greater resilience and to reduce risks in their agricultural operations (examples of strategies in Figure 1).

Through engagement with land managers and those who work with them, including Extension, Natural Resource Conservation Services (NRCS), and Soil and Water Conservation District (SWCD) professionals, it became clear that many of them were interested in soil health and its linkages with climate change adaptation and mitigation. As a result, Oregon NRCS and the USDA Northwest Climate Hub partnered to develop a resource to aid advisors and land managers in discussing soil health and climate resilience together. Continue reading

What Does Winter Wheat Decomposition Have to Do with Climate?

Managing crop residue is essential to reduced and no-till farming systems. These farming systems store more carbon than conventional farming systems, thereby mitigating climate change, enhancing soil health, and reducing soil erosion. In work described in a recent project report, Arron Carter and colleagues have been working to make it easier for growers with diverse needs across the Pacific Northwest to manage wheat residues. While the work is still in progress, it is an illustration of the kind of creative, applied work that is needed to make reduced-tillage systems easier to manage, and more widely adopted across the region.

Wheat growing in a field, with residues remaining from last year's harvest between the rows.

Wheat residue in a field in early July near Bickleton, WA. This area is part of the drier winter wheat-fallow area, where slower decomposing residues are preferred. Photo: Hilary Davis.

Growers in different parts of the dryland Pacific Northwest are seeking different residue characteristics. Continue reading

What can the Pacific Northwest Oyster Aquaculture Industry do about Ocean Acidification?

Market with baskets of shellfish for sale, and boards with prices in the background

Oysters for sale at Taylor Shellfish Farms in Samish Bay, WA. Photo: Brian Katz

By Thamanna Vasan and David M. Kling, Department of Applied Economics, Oregon State University

Chances are that, when you go to a restaurant for oysters in the Pacific Northwest, you’ll come across a menu that features the Pacific oyster. Also known as the immigrant oyster, the Pacific oyster made its way to the Northwest in the early 1900s from Japan, and has remained a staple in aquaculture in the region due to the ease with which growers can produce the oyster and the value it holds in markets.

Over the past decade the oyster industry in the Northwest has taken a hit. Due to rapidly changing ocean conditions, a growing process that once ran like clockwork has been experiencing major glitches, and public enemy number one is ocean acidification. Continue reading

Check it out: Extreme Winter Weather Severely Impacts the Dairy and Cattle Industry

By Laurie Houston

Person walking through snow to a car buried in a drift which completely covers the fence behind it.

The February 9, 2019 blizzard in eastern Washington dumped 2-3 feet of snow, and winds created drifts that fully covered ditches and fences. Photo: Washington State Department of Transportation under CC BY-NC-ND 2.0.

If you live in the Northwest, you either experienced first-hand or certainly heard about this past week’s blizzard in eastern Washington State.  This area does not usually get much precipitation over the course of a year.  During the winter, they may typically get a few inches of snow in any given storm. This storm, however, took many people by surprise and dumped 2-3 feet of snow in parts of eastern Washington, while bringing in winds from the east and temperatures in the low teens. Over 1,600 dairy cows were killed in this freak blizzard. At an estimated $2,000 per head, that is a loss of $3,200,000, spread over a little more than a dozen farms. That is huge unforeseen expense for struggling farmers to absorb, and a large amount of dead animals to dispose of safely.

Continue reading

Check it out: New Publication – Cultivating Climate Resilience on Farms and Ranches

By Gabrielle Roesch-McNally

Sunset over a flooded agricultural landscape.

Farms and ranches are expected to face challenges as climate change leads to more extreme and variable weather. Photo: Flickr user Brent M. under CC BY 2.0.

USDA SARE (Sustainable Agriculture Research & Education) recently published a new resource for land managers and those who advise them titled, “Cultivating Climate Resilience on Farms and Ranches.” This resource outlines some of the challenges that farmers and ranchers will face as climate change leads to more extreme and variable weather. While the resource is national in scope, there is a great table that briefly explores the observed and expected changes in weather across seven U.S. regions, including the Northwest (Table 1). Continue reading

Tools for Reducing the Increasing Forest Fire Risks

By Chris Schnepf

Rubble of a burned house, surrounded by scorched trees

Different factors can contribute to homes burning in catastrophic fires, including climate change and where people choose to build. Photo: C. Schnepf.

It was impossible to watch all the media coverage of the California fires last year, with many homes and forests burning, and not be moved. When large destructive fires like this hit, people have a natural desire to put some meaning to it. A variety of voices spoke of the changes in climate as being the culprit. Some pointed to fuel build-ups that were heavier than those forests had historically. Others pointed to people moving into parts of the landscape that were very fire prone, and suggested it was only a matter time before homes burned in forest fires. As with so many things, all these explanations for the impact of the fires contain some truth. Continue reading

Shared Data is a Key Part of Integrated Floodplain Management in the Puyallup Watershed

By Jordan Jobe, Center for Sustaining Agriculture and Natural Resources, Washington State University

In the Puget Sound Region, it’s clear that climate change impacts will involve changes in precipitation that will impact agriculture, especially agriculture in floodplain areas (Mauger et al. 2015). However, it’s not yet known how precipitation pattern changes will combine with changes in stormwater run-off and sea-level rise… and how these changes might differ between different watersheds. Flood risk reduction folks want this information so that they know how to properly size new culverts. Fish folks want this information to place and design salmon habitat restoration projects.

A drainage ditch very full with brown, near-stagnant water.

Nancy’s Ditch, a key agricultural ditch in the Puyallup Watershed’s Clear Creek area, is consistently slow-flowing and full of water. Photo: J. Jobe.

Continue reading

Engaging Climate Science through Citizen Science Apps

By Chris Schnepf

Queencup beadlily flowering on a forest floor

“Nature’s Notebook” is an app that can be used to collect phenology data such as flower timing. Photo: C. Schnepf.

Trying to understand how climate is changing, and how these changes affect the crop yields, forest growth, water from melting snowpacks, and all the other parts of our natural world, is very challenging. Increasingly, some of the primary tools for understanding these phenomena are models.

One of the biggest misconceptions about models is the idea they are not based in the real world – that they are just theoretical constructs, untethered to actual measurements. There are models like that – even philosophers are playing with models these days. But most of the models used in the natural sciences depend on empirical data – measurements of things like temperature, precipitation, crop yields, tree mortality, and many other attributes. Continue reading