Category Archives: Impacts & Adaptation

Profitability Tool for Growers Considering Alternative Rotations in Dryland Systems

By Karie Boone, Center for Sustaining Agriculture and Natural Resources, Washington State University, and Clark Seavert, Oregon State University

Wheat field ready for harvest

Climate change could bring changes in practices for small grain dryland systems. Photo: Erin Brooks

For the inland Pacific Northwest, climate change predictions including wetter springs and drier, hotter summers leads to production system uncertainties and risks for dryland, small grain farmers. Annual precipitation is projected to increase by about 5-15% by 2050 except during the summer months where precipitation is projected to decrease, resulting in decreased soil moisture during the late summer months. We have seen conditions similar to these projections in recent years, such as the droughts in 2015 and 2021 and a wet spring in 2019 that prevented planting almost 53,000 acres across Washington, Idaho, and Montana.

These changes are expected to increase reliance on fallow for small grain dryland systems. Fallowing strategies can lead to further declines in organic matter inputs, soil health, and reduced production capacity in the future. Potential alternatives attractive to producers include incorporating winter pea into rotations and planting cover crops coupled with livestock grazing. But will they be profitable? Continue reading

Check it out: Grazing Lands in Idaho, Oregon, and Washington

By Janelle Christensen, USDA Northwest Climate Hub

A herd of cattle overlooking a stream

Cattle graze in a small pasture near Wendell, Idaho. Photo: USDA/Kirsten Strough

Grazing lands in Idaho, Oregon, and Washington—from state, tribal and federally managed rangelands and forests to privately owned pasturelands—are an important part of each state. Livestock are a critical part of each state’s economy and contributed about $8.4 billion in sales in 2017. They are also important to the livelihoods of people who live in these states, many of whom come from families who have taken care of these lands for generations.

To understand how climate change is impacting the grazing season, I looked into some of the changes that will affect ranchers’ and managers’ ability to graze sustainably in the future. With warmer temperatures earlier in the year, springtime and grass emergence will happen earlier. Livestock may have reduced access to forage on federally managed grazing lands, where permits are set to open at the same date each year. Temperatures may also affect plant germination. Some plants require a certain number of chilling hours to reproduce and others become less productive in temperatures that exceed their optimal growth temperature. Additionally, changes to precipitation will affect the amount of forage available each year, which could negatively impact herds.

These are among the changes that are happening with climate change in this region. Check out the article I wrote for the Northwest Climate Hub to learn more about the effects of climate change on grazing lands in the Northwest.

Producers are the Best Ambassadors for Adoption of Climate-Smart Practices

By Tyler Harris, Eastern Oregon Agricultural Research Center, Oregon State University

A cayuse oat cover crop interseeded into a brassica field in Oregon’s Willamette Valley. Cover crops are just one example of a climate-smart practice that can help growers adapt to unpredictable weather patterns. Photo: Andrew Donaldson, Soil Conservationist, USDA Natural Resources Conservation Service.

With climate change, growers in the Pacific Northwest are facing a myriad of new challenges. These include a longer fire season and more frequent fires, warmer and drier summers, and increased drought potential in summer. A question that is becoming more pertinent every day for agronomists, rangeland managers, soil scientists, water quality specialists, and other service providers in agriculture is: How do we help producers adapt to climate change by adopting climate-smart practices? This is something a panel of agricultural professionals considered as part of a recent online climate resilience training hosted by the Oregon Climate and Agriculture Network (OrCAN). Continue reading

Top Articles from 2022 Show the Breadth and Diversity of Topics in AgClimate.net

By Sonia A. Hall, Center for Sustaining Agriculture and Natural Resources, Washington State University, and AgClimate Lead Editor

Word cloud from 2022 article titles, with 2022 Top Reads! overlaid2022 has come to a close, and 2023 seems to have revved up and is roaring along. We are still early enough in the year, though, to look back on 2022 and reflect on what you, our readers, found worthy of your time and attention. Here are the three most read 2022 articles, and three still-popular articles from earlier years. It is worth taking a look. I was struck by the breadth of topics and production systems these articles discuss, which is reflective of the variety in the Pacific Northwest that we explicitly try to cover in AgClimate.net. All these articles also have something in common: they discuss science-based resources that can help agricultural and natural resource professionals understand the implications of a changing climate, and explore options to be better prepared for the future. That is what AgClimate.net is about. Enjoy these top reads in 2022! Continue reading

Water Markets in Washington State: What if Leasing Part of a Water Right Was Allowed?

By Rajendra Khanal, Department of Civil and Environmental Engineering, University of Utah

 

Top: corn crop under center pivot, with arid slopes in background. Bottom: green irrigated wheat crop

Farmers growing crops such as wheat and corn might be more interested in leasing some – rather than all – of their water to support instream flows in times of water scarcity, which are likely to occur more frequently as the climate changes. Photo: WSDA under CC BY-NC 2.0 (corn) and Rajendra Khanal (wheat).

If you are a Washington agricultural producer who has a water right and wants to lease your water to another user, you are currently allowed to either lease your entire water right and fallow your land (that is, not use any of the water yourself) or not lease and use your full water right for crop production. The option of leasing a part of your water right (partial leasing) does not exist.

Introducing an option for partial leasing could make more farmers willing to participate in water markets, and thus expand markets’ potential as a tool for meeting diverse water needs, especially as climate change increases the likelihood that water supplies won’t be sufficient to meet all demands, all the time. For example, farmers might lease some of their water to support instream flows in times of water scarcity, which are likely to occur more frequently as the climate changes. Although there are a number of challenges that would need to be overcome to make partial leasing a reality (I discuss those later), we started by asking the question of whether the potential benefits of partial leasing are big enough to make it worth bothering to invest the time and money it would take to overcome those challenges. Continue reading

ANNOUNCEMENT: NCRC Community Grants Program – Call for Letters of Interest

Header for the Community Grants Program, with description of what the program funds (also in text) The Northwest Climate Resilience Collaborative is accepting applications for funding of climate resilience projects through its Community Grants Program. The Resilience Collaborative, a program of the Climate Impacts Group, seeks to fund justice-focused, environmental and climate projects that advance community-centered resilience priorities. Nonprofits, community organizations and Tribes in Washington, Idaho and Oregon that serve frontline communities are eligible to apply. Letters of Interest for the Community Grants are due February 28, 2023.   Continue reading

Check It Out: Virtual Fencing Can Exclude Cattle from Burned Areas in Large, Sagebrush Steppe Rangelands

By Morgan Lawrence, USDA Northwest Climate Hub

A cow grazes the sagebrush steppe

Sagebrush steppe rangelands play a crucial role in the success of Northwest ranching operations. Photo: Ben Amstutz under CC BY-NC 2.0.

Extensive sagebrush steppe rangelands play a crucial role in the success of Northwest ranching operations, allowing livestock to graze throughout the spring and summer months on fresh forage. However, as wildfire frequency and size increase in sagebrush steppe due to climate change, burned areas of varying sizes within these rangelands will need to be rested as they recover. Ranchers and rangeland managers will need new, cost-effective methods of separating cattle from these sensitive, burned areas on public rangelands while still grazing neighboring unburned areas.

Virtual fencing presents a compelling climate change adaptation option for doing just that. Continue reading

Exploring the Nexus of Solar Energy and Agriculture: How Do We Invest in Climate-Friendly Energy While Ensuring the Future of our Food Supply?

By Addie Candib and Chantel Welch, American Farmland Trust

Series of solar panels over bare ground

By 2050, 90% of solar energy is expected to come from utility-scale projects in rural communities (Ardani et al. 2021). Photo: Camille Seamann/Solutions Project under CC BY 2.0

Given ambitious state and federal goals for reducing greenhouse gas emissions, the pace of solar energy development is accelerating rapidly in the Pacific Northwest, placing significant pressure on the region’s agricultural land and its stewards. According to a US Department of Energy study, by 2050, 90% of solar energy will come from utility-scale projects in rural communities (Ardani et al. 2021). Our team at American Farmland Trust (AFT) recently looked specifically at solar development as a contributor to farmland loss (Hunter et al. 2022). In addition to the nearly 200,000 acres at risk of conversion to urban and low-density residential development, Washington State could lose as many as 86,000 acres to solar development by 2040 (Figure 1).  We estimate that about 80% of that development – or 68,800 acres – will occur on agricultural land. While this may not sound like a lot given Washington’s vast agricultural landscape, it’s equal to or more than the total acreages used by some flagship crops: barley (70,000 acres), hops (43,000 acres), cherries (39,000 acres), or onions (19,000 acres).

 The opportunity to lease land to solar developers may have considerable appeal for a farmland owner given the many challenges that face our region’s producers: unstable commodity markets, rising property values, labor shortages, climate change, and lack of successors, just to name a few. But solar leases also carry significant risk for the landowner and for the land. Here we discuss two approaches AFT is taking to help ensure that the interests and values of agricultural lands and landowners are equitably considered at all levels of decisions around solar development. Continue reading

Deficit Irrigation Can Improve Fruit Quality for Hard Cider Producers

By Sarah Davis, Intern at Washington State University’s Tree Fruit Research and Extension Center and the Center for Sustaining Agriculture and Natural Resources

Apple trees with fruit on the branches, green foliage

Cider apples in mid August under RDI treatment. Photo: Sarah Davis.

Growing up, I remember my grandfather bringing my family fresh Honeycrisp apples from his orchard in the Chelan area, describing the qualities that made them special. As an orchardist, my grandfather always strived to have delicious, high-quality produce coming from his orchards. My grandfather is not alone in this quest; growers across the state are looking for ways to enhance the quality of their crops. As climate change progresses and temperatures rise, fruit quality could be affected: climate change has been linked to delayed fruit ripening, low fruit quality, low fruit yield, sunburn, and more.  Regulated deficit irrigation (RDI) is one possible way to combat some of these impacts. Continue reading

Deficit Irrigation Conserves Water in Agriculture to Aid in Combating Water Stress

By Sarah Davis, Intern at Washington State University’s Tree Fruit Research and Extension Center and the Center for Sustaining Agriculture and Natural Resources

A group of red apples, showing a sticker labeling them from Chelan

Washington state produce can be found in supermarkets across the world. These Chelan apples were found in Kuala Lumpur. Photo: Flickr user Dennis Sylvester Hurd, under CC0 1.0 Universal

Washington State has nearly 15 million acres of farmland with around 39,000 operating farms, each producing necessary agricultural commodities. A few of the most well-known crops that are produced and distributed from Washington State are apples, cherries, hops, raspberries, and pears. Even when traveling across the country, I can find Chelan apples, which shows just how productive the state is in their cultivation of high value foods. Many of the 39,000 operating farms require irrigation to produce much of the aforementioned fruit that get distributed far and wide, which consumes a large portion of water resources. Continue reading