Category Archives: Impacts & Adaptation

Check it out: How does the Columbia Basin Fare as the Timing and Volume of Snowmelt Changes?

By Sonia A. Hall

A broad river, with snow covered mountain in the background.

The Columbia River is fed by snowmelt from surrounding mountains. These waters are used for irrigating crops, as well as other uses. Snowmelt patterns are expected to change across the world as the climate continues to warm. Photo: Flickr user jaisril under CC BY-NC-ND 2.0.

It is not always easy to extract regionally-relevant conclusions from global studies, such as the one discussed in the August 2020 CIRCulator article “Irrigated Agriculture, Snowmelt, and Climate Change.” So though many of the irrigation-dependent crops studied are not typical to the Pacific Northwest, this article discusses research that synthesizes key risk factors—whether a basin is currently dependent on snowmelt for irrigation water; how far out of sync water supplies and agricultural demand will become; can a basin realistically find new ways to store water, replacing the snowpack’s storage capacity—into a snowmelt hazard index. Big, global picture: The Columbia River Basin is expected to do better than watersheds to the south and the east, but overall received what the CIRCulator article called “a middling-but-still-worrisome snow hazard scale rating,” putting it, interestingly enough, right “next to the Tigris/Euphrates Basin.” Check out the CIRCulator article for a lot more detail, or, if you have access through a library or subscription, delve into the actual publication in Nature Climate Change.

 

Reference: 

Qin, Y., Abatzoglou, J.T., Siebert, S., Huning, L.S., AghaKouchak, A., Mankin, J.S., Hong, C., Tong, D., Davis, S.J. and Mueller, N.D., 2020. Agricultural risks from changing snowmelt. Nature Climate Change, 10(5), pp.459-465. https://doi.org/10.1038/s41558-020-0746-8

Check it out: Is Climate Change or Forest Management Causing Megafires?

By Sonia A. Hall

Mountainous landscape with smoke billowing up from wildfires

The Bobcat Fire, one of 2020’s megafires that resurfaces the question of whether forest management or climate change is driving these fires.

In response to the recent—and in California, ongoing—megafires, many have been asking whether the cause is climate change or forest management. Erin Hanan wrote a blog article arguing that this is not the right question, because in many cases both contribute to what is happening. The drivers of fire activity are complex, and the relative importance of these different drivers varies from one location and ecosystem to another.

Check out Hanan’s article to explore the five key things we need to know about the causes of the current wildfire problem. Understanding these five things can help us navigate the question of what is driving increased fire activity and, most importantly, can help us determine what can be done to reduce such large fires in the future.

Hot, Dry Summers Take a Toll on Trees in Western Washington

By Patrick Shults, Washington State University Extension

Tops of two conifer trees, one showing dead branches at the very top, with green canopy below

Western redcedar with a dead top as a result of drought stress. Photo: Patrick Shults, WSU Extension.

The coastal Pacific Northwest is home to some of the best tree-growing conditions in the world.  Fertile soils, plenty of rain, mild temperatures, and short dry seasons allow trees to pack on solid growth each year.  These conditions also give them a significant advantage in protecting themselves from insects and disease with tactics like pitching sap to flush out bark beetles, isolating roots infected with fungus, and compartmentalizing wounds.  However, these defenses are only possible when trees can avoid environmental stressors and, given a changing climate, certain stressors are expected to become more frequent.

Trees in this area have evolved to handle an annual dry season and, generally, mild temperatures during that time ensure they don’t suffer too much stress.  However, in the last decade the coastal Pacific Northwest has experienced unusually stressful conditions.  The summers of 2015, 2017, and 2018, for instance, were very dry and also particularly hot, which worsens moisture stress in trees.  While it is difficult to attribute any given year to climate change, climate modeling suggests hotter summers like these may be a new normal, and a drive down I-5 in western Washington will show many trees have already paid a price. Continue reading

Acting to Prepare for Severe Droughts in the Yakima River Basin

By Mengqi Zhao, recent PhD graduate, Washington State University

Collage of three photos, with plants in greenhouse, a dry pond with no vegetation, and a sprinkler over a crop, close up

Figure 1. Under low water availability conditions, the reliability of irrigation systems can be enhanced through strategies that improve water supply when it is needed or reduce water demand. Examples include greenhouses (left), aquifer recharge (recharge pond, top right), and irrigation technology (bottom right). Photos: Mengqi Zhao (greenhouse and pond) and Kay Ledbetter, Texas A&M AgriLife Research, under CC BY-NC-ND 2.0 (sprinkler).

For more than fifty years, individuals and organizations in the Yakima River Basin (YRB) have been working toward improving water availability, especially for agriculture. The mismatch between rainfall (and snowmelt) timing and the irrigation season has focused these efforts on strategies for increasing water storage. However, farmers frequently encounter insufficient irrigation water supply and large demands from agricultural activities, resulting in prorationing across irrigation districts during every severe drought of record since 1970s. In the Pacific Northwest, projected water scarcity situations under future climate change scenarios could increase to 68% of years in the 2080s if no actions are taken, compared to only 14% of years on average historically (Vano et al., 2010).

Facing such frequent low water availability conditions, what methods can improve the reliability of irrigation systems? How might people’s decisions on adopting those methods affect system vulnerability to droughts? The fundamental solutions to these questions rely on strategies that either improve water supply when it is needed or reduce water demand. Continue reading

Forest Insects and Disease – Watching for Weirdness

By Chris Schnepf

Close up of a sapling with sporulating blister rust

Blister rust has to have very high humidity to successfully infect white pine needles. Photo: John Schwandt.

When it comes to climate change, many people focus on raw physics: how much more precipitation or less, the number of frost free days, how many days a year above or below certain temperatures, the length of the fire season, etc. These dimensions are all important to reflect on and study, but it may be that some of the most significant climate change effects could be things we can’t even imagine – what some people might refer to as “global weirding.”  Continue reading

The Need for Flexibility when Managing Grazing

Matthew C. Reeves, U.S. Forest Service, Rocky Mountain Research Station

Grassy, green hillslope with some shrubs scattered around

Forage variability is expected to increase even further in the future, enhancing the need for flexibility in managing grazing on rangelands in the Pacific Northwest. Photo: Darrell Kilgore.

The amount of annual net primary production on rangelands forms the forage base upon which livelihoods and billions of dollars of commerce depend. Land managers and livestock producers in the Pacific Northwest deal with high year-to-year variations in net primary production, which often varies 40% between years due to changes in the amount of precipitation from one year to the next. And in the future, it is widely expected that climate change will lead to further increases in year-to-year variability, creating both challenges and opportunities for ranchers in the region. We therefore need to understand the longer-term changes in how net primary production and resulting forage production will vary, so we can explore new options that provide increased flexibility to ranchers and managers. Continue reading

Dry Farming Gains Ground in the Northwest

By Paris Edwards, USDA Northwest Climate Hub and Amy Garrett, Oregon State University Extension

Rows of densely covered vegetable crops, with a row of trees in the background

Dry farming trial at the Oregon State University Oak Creek Center for Urban Horticulture. Photo: Amy Garrett, taken on July 27th, 2020.

In parts of the maritime Pacific Northwest, climate conditions work well for dry farming, a set of soil preparation and management techniques that allow for growing food with little to no supplemental water. Dry farming has a long history of practice in the West, but a recent resurgence in popularity can be linked to water access challenges, drought, and uncertain future climate conditions. Dry farming fruits and vegetables requires a set of techniques that are evolving as the global network and local community of experts continues to expand and innovate together. So how is the reemergence of dry farming in the Northwest unfolding, and what does it have to offer growers and consumers? Continue reading

Rangeland Fire Protection Associations – An Important Tool, Now and in the Future

Emily Jane Davis, Assistant Professor and Extension Specialist, Oregon State University Extension, & Sonia A. Hall, Center for Sustaining Agriculture and Natural Resources, Washington State University

Cheatgrass seedheads in the foreground, mixed with medusahead spikes.

Annual invasive grasses like cheatgrass, here appearing with a typical reddish tint, increase fuel loads and favor bigger fires, especially as the climate changes. Photo: Darrell Kilgore.

Wildfires in rangeland systems across the western United States, including the intermountain Northwest, are not going away. If anything, research and climate change modeling suggest that wildfire activity will continue to increase (Abatzoglou and Kolden 2011), and conditions support expansion of the annual invasive grasses, like cheatgrass, that increase fuel loads and favor bigger fires (Bradley et al. 2016). Yet wildfires are already an issue in these rangelands systems, for ranchers, natural resource managers, and conservationists worried about species like Greater sage grouse. So, tools that are helping make a difference now can become the path forward for addressing these issues in the future as well.

Wildfire impacts cross ownership boundaries, and ranchers are often closest to fires when they start. In the sagebrush steppe landscapes of eastern Oregon and Idaho, growing numbers of ranchers participate in Rangeland Fire Protection Associations (RFPAs) to help minimize these impacts. Continue reading

Community Learning and Social Resilience – An Example of its Importance

By James Ekins, Ph.D., University of Idaho Extension

Citizen science workshop participants learning to collect water quality data in a gentle stream.

IDAH2O citizen scientists learning how to collect good stream data. Participants return home with a more sophisticated understanding of stream processes and are better prepared to explain stream health to neighbors and elected representatives, contributing to community learning. Photo: James Ekins.

Understanding and managing natural resources and agricultural processes are complex tasks, especially in a rapidly changing world. Community resilience has been described as the “existence, development, and engagement of community resources by community members to thrive in an environment characterized by change, uncertainty, unpredictability and surprise (Magis 2010).” One important ingredient for achieving community resilience is community learning, the idea that groups of people build and share norms, values, beliefs, and understandings of the world around them. Overall, the better a community communicates, the greater its ability to develop values and norms that lead to adaptive capacity (the ability of people to engage in activities that influence resilience). Different ways of knowing enable different capacities; communities assemble knowledge from multiple sources, along with local (place-based) cultural adaptations, to adapt to change.

As an Extension educator, I wonder how social learning increases a community’s capacity to react and adapt to socio-ecological change. Are we as non-formal educators making a difference? Are our communities more resilient with long term educational processes like multistakeholder collaborative groups, field tours, and public education workshops? How do they result in a community that is better connected, with a broader base of knowledge and common understanding to draw from? Continue reading

Managing for Washington’s Future: A Bigger Player in Veggie Production

By Fidel Maureira, Department of Biological Systems Engineering, Washington State University

Cartoon of hilly landscape with rows of vegetables.

Cartoon adapted from https://pixabay.com (free for commercial use; no attribution required).

A few months ago I wrote an article that gave a preview of the work we were conducting, to explore whether Washington State could become the new California in vegetable production as the climate warms. Results from this work are now in, and the answer is… yes, the potential is definitely there. Continue reading