Category Archives: Impacts & Adaptation

Implications of Shifting Timing in Water Availability in Eastern Washington

By Aaron Whittemore, Center for Sustaining Agriculture and Natural Resources, Washington State University

Side of irrigation canal with intake to the pump, dry above the level of the water

The Roza-Moxee pump station during the 2015 drought. Photo: Tim Poppleton/OCR

The Columbia River Basin has grappled with limited water supplies for decades. This was most noticeable during 2015, when we experienced severe summertime drought across large areas of Washington State, which reduced the amount of water available to meet the region’s demands. The 2015 drought and other recent occurrences of lower water availability are representative of a warmer future with lessening snowpack and earlier snowmelt. In fact, Washington is expected to experience drought again this summer due to rapidly melting snowpack and low precipitation forecasts, underscoring the prevalence of water supply issues for the state. Continue reading

Check It Out: Cooling Queens Helps Them Survive the Hot Summers

By Lulu Chen, Intern at the AgAID Institute, Washington State University

 

Bee flying towards a white flower.

Climate change poses a unique difficulty for beekeepers banking queen bees over the summer. Photo: Dirk Gently under CC BY-NC-ND 2.0.

Warmer summers brought on by climate change pose a unique difficulty for beekeepers. However, a recent study by Washington State University suggests a viable remedy. The study looks into the practice of “queen banking,” which involves keeping extra queens for use in the future. The researchers found that by keeping queen bees in controlled indoor situations over the summer, beekeepers may increase honey bee survivorship and take proactive steps to address climate change. It is important to note that there are a few factors, which should be covered in more detail, that make it necessary to bank queens during the summer. Continue reading

Check it out: Atmospheric Rivers in the Northwest

By Janelle Christensen, USDA Northwest Climate Hub

Colored image of the North Atlantic, showing the river of moisture in warm colors

An atmospheric river noted in green and yellow band going into the West Coast, February 2004. Image: NOAA Physical Sciences Laboratory Advanced Quantitative Precipitation Information.

Atmospheric rivers are a buzzword right now. A few years ago, I had never heard the term, and now I hear it on the news and tossed about in everyday conversation with colleagues and friends. Although atmospheric rivers are not a new phenomenon, they were only given a name in the 1990s. I grew up knowing about the Pineapple Express, one of the largest ones that hits the West Coast every year, but like many people, I did not know that this was a common atmospheric event. Because I’m hearing the term more and more, I decided to look into the current research about atmospheric rivers and what impacts climate change will have on them. Continue reading

Check It Out: Ensuring that Hazelnuts in Oregon and Washington Stay Resilient

Morgan Lawrence, USDA Northwest Climate Hub

Mowed vegetation between rows of hazelnut trees

Cover crops grow between rows of hazelnut trees on Ioka Farms in the Willamette Valley. Photo: Robert Hathorne, NRCS Oregon.

You may know hazelnuts (also called filberts) for their starring role in everyone’s favorite hazelnut-chocolate spread. Or perhaps you’ve enjoyed a delicious hazelnut latte while eating a hazelnut-filled truffle. But did you know that Oregon produces 99% of U.S. hazelnuts, and Washington produces the other 1%? Under the right conditions, hazelnuts are a climate-resilient crop that can be used for food products, cooking oils, livestock feed, and even bioenergy. With the development of pathogen-resistant cultivars, the hazelnut market in Oregon and Washington has the potential to expand. However, expansion will require some climate-smart management.

Because reliable hazelnut crops can only be produced under moderate climatic conditions, they will need some help in adapting to the challenges of climate change. Hazelnut trees do not grow well under extremely hot or cold temperatures, high winds, or with pathogens like eastern filbert blight. However, they are drought-resistant trees, and they can be grown in soils not suitable for a lot of other crops, like hilly or sloping soils. Hazelnut trees also provide many benefits, including storing carbon, reducing soil erosion, improving water quality, and providing wildlife habitat. There are methods to ensure the resilience and growth of the hazelnut industry under climate change in our region. For example, producers can choose a planting site with soils that have good drainage and are not south-facing. To learn more about this delicious Northwest crop and considerations for keeping it resilient, check out this article I wrote for the Northwest Climate Hub.

 

 

Profitability Tool for Growers Considering Alternative Rotations in Dryland Systems

By Karie Boone, Center for Sustaining Agriculture and Natural Resources, Washington State University, and Clark Seavert, Oregon State University

Wheat field ready for harvest

Climate change could bring changes in practices for small grain dryland systems. Photo: Erin Brooks

For the inland Pacific Northwest, climate change predictions including wetter springs and drier, hotter summers leads to production system uncertainties and risks for dryland, small grain farmers. Annual precipitation is projected to increase by about 5-15% by 2050 except during the summer months where precipitation is projected to decrease, resulting in decreased soil moisture during the late summer months. We have seen conditions similar to these projections in recent years, such as the droughts in 2015 and 2021 and a wet spring in 2019 that prevented planting almost 53,000 acres across Washington, Idaho, and Montana.

These changes are expected to increase reliance on fallow for small grain dryland systems. Fallowing strategies can lead to further declines in organic matter inputs, soil health, and reduced production capacity in the future. Potential alternatives attractive to producers include incorporating winter pea into rotations and planting cover crops coupled with livestock grazing. But will they be profitable? Continue reading

Check it out: Grazing Lands in Idaho, Oregon, and Washington

By Janelle Christensen, USDA Northwest Climate Hub

A herd of cattle overlooking a stream

Cattle graze in a small pasture near Wendell, Idaho. Photo: USDA/Kirsten Strough

Grazing lands in Idaho, Oregon, and Washington—from state, tribal and federally managed rangelands and forests to privately owned pasturelands—are an important part of each state. Livestock are a critical part of each state’s economy and contributed about $8.4 billion in sales in 2017. They are also important to the livelihoods of people who live in these states, many of whom come from families who have taken care of these lands for generations.

To understand how climate change is impacting the grazing season, I looked into some of the changes that will affect ranchers’ and managers’ ability to graze sustainably in the future. With warmer temperatures earlier in the year, springtime and grass emergence will happen earlier. Livestock may have reduced access to forage on federally managed grazing lands, where permits are set to open at the same date each year. Temperatures may also affect plant germination. Some plants require a certain number of chilling hours to reproduce and others become less productive in temperatures that exceed their optimal growth temperature. Additionally, changes to precipitation will affect the amount of forage available each year, which could negatively impact herds.

These are among the changes that are happening with climate change in this region. Check out the article I wrote for the Northwest Climate Hub to learn more about the effects of climate change on grazing lands in the Northwest.

Producers are the Best Ambassadors for Adoption of Climate-Smart Practices

By Tyler Harris, Eastern Oregon Agricultural Research Center, Oregon State University

A cayuse oat cover crop interseeded into a brassica field in Oregon’s Willamette Valley. Cover crops are just one example of a climate-smart practice that can help growers adapt to unpredictable weather patterns. Photo: Andrew Donaldson, Soil Conservationist, USDA Natural Resources Conservation Service.

With climate change, growers in the Pacific Northwest are facing a myriad of new challenges. These include a longer fire season and more frequent fires, warmer and drier summers, and increased drought potential in summer. A question that is becoming more pertinent every day for agronomists, rangeland managers, soil scientists, water quality specialists, and other service providers in agriculture is: How do we help producers adapt to climate change by adopting climate-smart practices? This is something a panel of agricultural professionals considered as part of a recent online climate resilience training hosted by the Oregon Climate and Agriculture Network (OrCAN). Continue reading

Top Articles from 2022 Show the Breadth and Diversity of Topics in AgClimate.net

By Sonia A. Hall, Center for Sustaining Agriculture and Natural Resources, Washington State University, and AgClimate Lead Editor

Word cloud from 2022 article titles, with 2022 Top Reads! overlaid2022 has come to a close, and 2023 seems to have revved up and is roaring along. We are still early enough in the year, though, to look back on 2022 and reflect on what you, our readers, found worthy of your time and attention. Here are the three most read 2022 articles, and three still-popular articles from earlier years. It is worth taking a look. I was struck by the breadth of topics and production systems these articles discuss, which is reflective of the variety in the Pacific Northwest that we explicitly try to cover in AgClimate.net. All these articles also have something in common: they discuss science-based resources that can help agricultural and natural resource professionals understand the implications of a changing climate, and explore options to be better prepared for the future. That is what AgClimate.net is about. Enjoy these top reads in 2022! Continue reading

Water Markets in Washington State: What if Leasing Part of a Water Right Was Allowed?

By Rajendra Khanal, Department of Civil and Environmental Engineering, University of Utah

 

Top: corn crop under center pivot, with arid slopes in background. Bottom: green irrigated wheat crop

Farmers growing crops such as wheat and corn might be more interested in leasing some – rather than all – of their water to support instream flows in times of water scarcity, which are likely to occur more frequently as the climate changes. Photo: WSDA under CC BY-NC 2.0 (corn) and Rajendra Khanal (wheat).

If you are a Washington agricultural producer who has a water right and wants to lease your water to another user, you are currently allowed to either lease your entire water right and fallow your land (that is, not use any of the water yourself) or not lease and use your full water right for crop production. The option of leasing a part of your water right (partial leasing) does not exist.

Introducing an option for partial leasing could make more farmers willing to participate in water markets, and thus expand markets’ potential as a tool for meeting diverse water needs, especially as climate change increases the likelihood that water supplies won’t be sufficient to meet all demands, all the time. For example, farmers might lease some of their water to support instream flows in times of water scarcity, which are likely to occur more frequently as the climate changes. Although there are a number of challenges that would need to be overcome to make partial leasing a reality (I discuss those later), we started by asking the question of whether the potential benefits of partial leasing are big enough to make it worth bothering to invest the time and money it would take to overcome those challenges. Continue reading

ANNOUNCEMENT: NCRC Community Grants Program – Call for Letters of Interest

Header for the Community Grants Program, with description of what the program funds (also in text) The Northwest Climate Resilience Collaborative is accepting applications for funding of climate resilience projects through its Community Grants Program. The Resilience Collaborative, a program of the Climate Impacts Group, seeks to fund justice-focused, environmental and climate projects that advance community-centered resilience priorities. Nonprofits, community organizations and Tribes in Washington, Idaho and Oregon that serve frontline communities are eligible to apply. Letters of Interest for the Community Grants are due February 28, 2023.   Continue reading