Category Archives: Greenhouse Gas Emissions

Check it Out: Can Biochar Be Used for Carbon Dioxide Drawdown in Washington State?

By Karen Hills

Bag full of biochar, a black gravelly material

Figure 1. Biochar has the potential to improve agricultural soils and sequester carbon. Source: USDAgov, licensed under CC PDM 1.0.

This is part of a series highlighting work by Washington State University (WSU) researchers through the Waste to Fuels Technology Partnership between the Department of Ecology and WSU during the 2017-2019 biennium.

In a recent study, Jim Amonette at the Pacific Northwest National Laboratory and Washington State University Center for Sustaining Agriculture and Natural Resources developed an improved method to estimate the technical potential for biochar (Figure 1)—made from forestry residues and waste wood (Figure 2) and applied to agricultural soils in Washington State—to store carbon, drawing down atmospheric carbon (C) and contributing to mitigating climate change. Amonette selected twenty-six counties in Washington State for application of this improved method (Figure 3). For each county, Amonette developed seven biomass feedstock and biochar process scenarios including one for waste wood harvested from municipal solid waste alone, and six for waste wood combined with forestry residues from timber harvesting operations. The research generated results for each of the 26 counties. Continue reading

Sequestering Carbon in Cross-Laminated Timber

By Chris Schnepf

Panel of five layers of boards glued together perpendicular to each other.

Cross-laminated timber panels are made by gluing together three or more layers of boards perpendicular to each other. Photo: Chris Schnepf.

Most of the articles on AgClimate.net focus on adaptation; that is, how we manage fields, forests, and rangelands to adapt to anticipated changes in climate. But there is another side to dealing with climate change—how do we reduce the amount of carbon dioxide in the atmosphere? These efforts are collectively referred to as “mitigation”.

Most of our mitigation focus has been on practices to reduce emissions from cars, tractors, planes, manufacturing, livestock, etc… anything that puts greenhouse gases into the atmosphere. But another part of the mitigation discussion focuses on techniques to place carbon where it can be stored long term and kept out of the atmosphere. In forestry and agriculture there is a lot of research underway on practices that sequester more carbon, from changing agricultural practices, using biochar as a soil amendment in agriculture, to managing forests in ways that retain more carbon, within fire safety limitations.

One of the unique dimensions of carbon sequestration in forestry is how materials generated in forest management are used. Continue reading

Exploring Whether Washington State Could Become the New California in Vegetable Production

By Fidel Maureira, Ph.D. Candidate, Department of Biological Systems Engineering, Washington State University

Climate variability and change—rising temperatures, more frequent heat waves, drought, less snowpack, pests and diseases, wildfires, and the resulting over-use of resources such as groundwater—are creating critical agricultural production risks for California, the leading vegetable and fruit producing area of the United States. These issues are projected to get worse in the future. In contrast, climate change-related challenges in the Columbia River Basin are projected to be less extreme and there is potential for a more favorable climate for certain agricultural products, providing the Columbia River Basin with relative competitive advantages over California. Can the irrigated areas of Washington State supplement some of the expected losses in vegetable production in California? The answer is not clear yet, but we are exploring the implications of increasing vegetable production in the Basin, using climate change projections and models that quantify how regional hydrology and crops would respond to those climatic changes (Figure 1).

Diagram showing expected changes in vegetable production and certain crops expected in the future, in Washington and California

Figure 1. Vegetable production in California will suffer a reduction in total production because of rising temperatures effects on vegetables and a higher risk of water shortages. In contrast, Washington will show positive conditions in mid-century for growing crops and good supply of water. Can the irrigated areas of Washington State supplement some of the expected losses in vegetable production in California? This could be a beginning of new vegetable production in irrigated areas of Washington. Footnotes refer to references, below.

Continue reading

What can the Pacific Northwest Oyster Aquaculture Industry do about Ocean Acidification?

Market with baskets of shellfish for sale, and boards with prices in the background

Oysters for sale at Taylor Shellfish Farms in Samish Bay, WA. Photo: Brian Katz

By Thamanna Vasan and David M. Kling, Department of Applied Economics, Oregon State University

Chances are that, when you go to a restaurant for oysters in the Pacific Northwest, you’ll come across a menu that features the Pacific oyster. Also known as the immigrant oyster, the Pacific oyster made its way to the Northwest in the early 1900s from Japan, and has remained a staple in aquaculture in the region due to the ease with which growers can produce the oyster and the value it holds in markets.

Over the past decade the oyster industry in the Northwest has taken a hit. Due to rapidly changing ocean conditions, a growing process that once ran like clockwork has been experiencing major glitches, and public enemy number one is ocean acidification. Continue reading

The Devil is in the Process: Co-composting Biochar Could Benefit Crop Growth and the Environment

By Karen Hills

Biochar has the potential to sequester carbon and improve the properties of soils when used as an agricultural amendment. However, biochar will only be a viable option for carbon sequestration if there are uses and viable markets for this biochar. In recent years, there has been interest in adding biochar to agricultural soils in conjunction with compost, and in some cases, “co-composting” biochar—putting the biochar in with the feedstock before the composting altogether. Read on to learn about a study led by Dr. David Gang, a professor at Washington State University’s Institute of Biological Chemistry, indicating that co-composting can provide additional benefits, both during the composting process and to the crops grown in soil amended with the resulting co-composted biochar.

Three people around equipment on a compost pile

Figure 1. Mark Fuchs (left), John Cleary (right) (both of the Washington Department of Ecology) and Nathan Stacey (middle, WSU) use equipment to measure gas emissions from a commercial scale co-composting experiment. Photo: Doug Collins, WSU.

Continue reading

Check it out: How to Spread Biochar in Forests

By Sonia A. Hall

A number of our articles this year discussed using biochar in agriculture and in forestry. These earlier articles did not delve into the methods to apply biochar on large tracts of forests. You’d expect this to be a much more challenging task than spreading biochar on croplands. Researchers and technology developers are tackling this particular issue, developing a specialized forest biochar spreader. Take a few minutes to check out their Science Spotlights article and their video. Among the details they discuss in the video is a point Chris Schnepf and Darren McAvoy made in their AgClimate article: biochar can use—and store the carbon that is in—those “leftovers” that otherwise get burned, releasing that carbon into the atmosphere.

OneNOAA CSSR series

Beginning Thursday, July 12 at 9:00 am Pacific Standard Time – and occurring weekly at that time through Tuesday, August 28 – the OneNOAA seminar series will be hosting an 8-part suite of talks on different aspects of the National Climate Assessment 4 Volume I – the Climate Science Special Report.  This is a fantastic opportunity to learn about the latest climate science from some of the nation’s most eminent scientists!

  • Thurs, July 12: Climate Science: What’s New? – Katharine Hayhoe (Texas Tech University)
  • Thurs, July 19: Detection and Attribution of Climate Change from the CSSR – U.S. Perspective – Tom Knutson (NOAA-GFDL)
  • Thurs, July 26: Droughts, Floods, and Wildfire – Michael Wehner (DOE-LBNL)
  • Thurs, Aug 2: Climate Potential Surprises – Compound Extremes and Tipping Elements – Radley Horton (Columbia University / Lamont-Doherty Earth Observatory)
  • Thurs, Aug 9: Climate Long-Term Climate Mitigation Perspectives and the 2°C Objective – Ben DeAngelo (NOAA)
  • Thurs, Aug 16: The Causes and Consequences of a Rapidly Changing Arctic – Patrick Taylor (NASA-Langley Research Center)
  • Thurs, Aug 23: Climate Tidings of the Tides – Billy Sweet (NOAA)
  • Tues, Aug 28: The Fourth U.S. National Climate Assessment: An Overview of Volume 1 – Don Wuebbles (University of Illinois)

Forest to Farm Biochar – What will it take?

By Laurie Houston

Biochar made from woody biomass. Photo: Oregon Department of Forestry under CC BY 2.0.

My colleagues kicked off a discussion on biochar with their recent articles. Biochar can potentially be a win for soil health, for carbon sequestration in soils, and for fire risk reduction in forests. Kristin Trippe talked about the benefits of biochar as soil amendments in agricultural soils, and a tool to help producers choose biochar products. Chris Schnepf and Darrell McAvoy discussed the benefits and challenges of using forestry slash to produce biochar, and how mobile kilns can facilitate that. So, if biochar has all these benefits why aren’t all farmers spreading biochar on their fields? And why isn’t all the biomass from thinning being processed into biochar? Continue reading

Biochar and Forestry

By Chris Schnepf, University of Idaho, and

Darren McAvoy, Utah State University

Biochar is being used in a variety of agricultural and home and garden applications. Photo: C. Schnepf.

Biochar has many possible agricultural benefits. Given the large role that fire plays in western forests, biochar has likely also already played a significant role in Northwest forests, as evidenced by the charcoal commonly found on top of or buried in our forest soils. Biochar shows promise in providing additional benefits in restoring heavily disturbed forest sites, such as forest roads, skid trails, and landings. For more information, see a chapter in a recent biochar book detailing the current state of North American forest biochar research.

Most of the enthusiasm around biochar in the forestry community, however, is related to using forest management residues to create biochar and useable fuels, such as bio-oil and syngas. Continue reading

Stepping back: What have we learned about agriculture and climate change, and where do we go from here?

By Georgine Yorgey

Cattle grazing on an allotment east of the Owyhee River Canyon, Oregon. Used with permission via Flickr from the Bureau of Land Management (CC BY 2.0).

As a number of large climate-and-agriculture projects at our Pacific Northwest universities have come to an end over the last year, we felt it was time to step back and take stock.  Our projects have included dryland wheat farming, anaerobic digestion systems for dairies, and  improving understanding of the interactions among carbon, nitrogen, and water at the regional scale. Now that they are complete, what have we learned? Where should research and extension go from here? In an effort to prioritize and catalyze future regional research and extension efforts, we worked with partners to host a workshop titled “Agriculture in a Changing Climate” (March 9-11, 2016). The event brought together a diverse set of stakeholders—university faculty and students, crop and livestock producers, and individuals representing state, tribal and federal government agencies, industry, nonprofit organizations, and conservation districts—to summarize what we know, identify challenges and gaps, and define priorities for moving forward. Continue reading