Category Archives: Greenhouse Gas Emissions

Large-scale Solar Developments and Protected Lands – Can We Have Them Both?

By Karen Janowitz, Washington State University Energy Program

View of shrubsteppe lands in the Columbia Plateau in Washington

The Columbia Plateau boasts important ranchlands and are important to many endangered and threatened species and habitats as well as Tribal cultural resources. Photo: Ferdi Businger.

The passage of Washington State’s Clean Energy Transformation Act in 2019 mandates an electricity supply free of greenhouse gas emissions by 2045. Large-scale renewable energy projects are one way to achieve this mandate. Solar companies see this as an opportunity and are pursuing projects in the sunniest, least developed part of the state—the Columbia Plateau region. As many of you know, the area boasts some of the most productive farmland and ranchland in the state, as well as many endangered and threatened species and habitats, and Tribal cultural resources.

Concerned about losing these values to large renewable energy developments while acknowledging the need for renewables, the 2019 Washington State Legislature directed the Washington State University Energy Program (WSUEP) to pursue a Least-Conflict Solar Siting project for the Columbia Plateau. The project must be completed by June 30, 2023, and we are in the midst of working with a wide-ranging and diverse set of interests to produce maps that can help us balance the need for renewable energy with protecting Washington State’s productive farmland and ranchland, Tribal rights and resources, and species and habitats. You can assist with the project by reviewing draft maps, which will be available soon. Read on to gain an understanding of this novel and important process. Continue reading

Top Articles from 2022 Show the Breadth and Diversity of Topics in AgClimate.net

By Sonia A. Hall, Center for Sustaining Agriculture and Natural Resources, Washington State University, and AgClimate Lead Editor

Word cloud from 2022 article titles, with 2022 Top Reads! overlaid2022 has come to a close, and 2023 seems to have revved up and is roaring along. We are still early enough in the year, though, to look back on 2022 and reflect on what you, our readers, found worthy of your time and attention. Here are the three most read 2022 articles, and three still-popular articles from earlier years. It is worth taking a look. I was struck by the breadth of topics and production systems these articles discuss, which is reflective of the variety in the Pacific Northwest that we explicitly try to cover in AgClimate.net. All these articles also have something in common: they discuss science-based resources that can help agricultural and natural resource professionals understand the implications of a changing climate, and explore options to be better prepared for the future. That is what AgClimate.net is about. Enjoy these top reads in 2022! Continue reading

The Climate Commitment Act is Coming. How Will it Impact Washington Agriculture?

Dani Gelardi, Washington State Department of Agriculture

A new mandate

WEED-IT infrared spray equipment being used as a demostration in stubble that has not been tilled in Douglas County.

Agriculture accounts for an estimated 6.7% of the total greenhouse gas emissions in Washington. Could the Climate Commitment Act pose opportunities to help reduce or offset those emissions? Photo: Leslie Michel.

On January 1st, 2023, major portions of the Climate Commitment Act (CCA) will launch in Washington State. This ambitious law is part of Washington’s plan to eliminate or offset all greenhouse gas (GHG) emissions by 2050. The Washington State Department of Ecology estimates that agriculture accounts for 6.7% of the total emissions in Washington. Despite this sizable GHG contribution, agriculture is exempt from CCA mandates, due to existing laws that already regulate this sector. While it remains uncertain how regulations facing the food manufacturing sector may eventually impact agricultural producers, the CCA will not cap emissions from the production of unprocessed livestock and crops. Does this mean these activities will be entirely unaffected? Continue reading

Challenges with Renewable Energy and How Biofuels Can Help

By Janelle Christensen, MESM, ORISE Science Communication fellow for the USDA Northwest Climate Hub

Wind turbines over a grassland with livestock

Renewable energy like wind power could help to reduce some of the biggest impacts from climate change. Photo: NRCS Montana.

In the face of climate change, much of the world looks to renewable energy. It offers the promise of preventing some of the worst impacts from climate change while allowing us to continue to live similar to how we do currently. Although we need to change how we live in addition to using renewables, without them, we would need to completely revert to pre-industrial times. However, I can guarantee that as I write this on my laptop in my air-conditioned house at my remote job that that is out of the question. With a power grid that runs off clean energy, the changes and reductions we make in our day-to-day lives have a larger impact. If we choose public transportation over driving, it makes a bigger difference if that train runs off a renewable energy powered grid. If we change to more efficient, long-lasting light bulbs and we use solar to power those bulbs, we are wasting less and not emitting carbon dioxide to power our house. The combination of action and renewables is powerful, but switching to 100% renewable energy has some challenges. Continue reading

Our Five-Year Mission … to Boldly Go Where No Integrated Model Has Gone Before

By David I. Gustafson, Adjunct Research Faculty at Washington State University

This article is part of a series, Climate Friendly Fruit & Veggies, highlighting work from the Fruit & Vegetable Supply Chains: Climate Adaptation & Mitigation Opportunities (F&V CAMO) project, a collaborative research study that was co-led by investigators at the University of Florida and the Agriculture & Food Systems Institute. Other collaborators included researchers at the University of Arkansas, University of Illinois, the International Food Policy Research Institute, the World Agricultural Economic and Environmental Services, and Washington State University. This project identified and tested climate adaptation and mitigation strategies in fruit and vegetable supply chains.

Star ship flying around a planet

Figure 1. Still image from the original Star Trek TV series. Source: Maurice Mitchell (https://www.thegeektwins.com/2019/10/every-star-trek-opening-theme-song.html)

As a child of the sixties, I can still remember our family sitting together to watch the coolest show on television, Star Trek (Figure 1). Every episode began with these poetic words: “Space: the final frontier. These are the voyages of the starship Enterprise. Its five-year mission: to explore strange new worlds. To seek out new life and new civilizations. To boldly go where no man has gone before!”

These words came to mind as I reflect on the conclusion of our five-year project to develop and apply the powerful tools of integrated modeling for a unique purpose: to identify climate adaptation and mitigation opportunities in U.S. fruit and vegetable (F&V) supply chains. Continue reading

The Basics of Carbon Markets and Trends: Something to Keep an Eye On

By Karen Hills, Center for Sustaining Agriculture and Natural Resources, Washington State University

Certain carbon markets could provide a win-win for producers and environmental interests pursuing reduction in emissions. Photo: Scott McLeod under CC BY 2.0.

The ability to store carbon in soils—to sequester carbon—has been receiving increased attention lately, including on AgClimate.net. Recent posts included articles about potential for croplands in the inland Pacific Northwest to sequester carbon and an article on the emerging carbon markets and their relevance for fruit and vegetable producers. Carbon markets offer the promise of monetizing the benefits of practices that add carbon to the soil, and are also good for soil health. If these markets are effective, they would provide a win-win for producers and environmental interests.

Thanks to the wonders of a zoom-friendly world, I recently attended a mini-workshop hosted by the University of Florida and the Institute of Food and Agricultural Extension where we explored carbon markets. Continue reading

Reservoirs Store and Release More Than Just Water

By Aaron Whittemore, Center for Sustaining Agriculture and Natural Resources, Washington State University

 

Arid landscape with irrigated fields and towns along a wide river, with a large dam across it

The Grand Coulee Dam is one of a system of dams on the Columbia River used for water storage, energy production and flood control. Credit: Bureau of Reclamation.

Reservoirs are common infrastructure across the globe, with myriad benefits and costs attached. In the Pacific Northwest, for example, reservoirs are used for water storage, energy production, and flood control, but they impact salmon by blocking passage to spawning and rearing habitat and also lose water to evaporation. However, few people know that reservoirs are also a significant source of greenhouse gases, releasing emissions on the scale of thousands of teragrams (Tg) per year, globally. For reference, the entire U.S. usually emits between six and seven thousand teragrams of greenhouse gases each year. Estimates of reservoir emissions have remained uncertain, though, making it hard to find ways to reduce these emissions. Dr. John Harrison from Washington State University teamed up with colleagues from the University of Quebec at Montreal to try to narrow down estimates of global reservoir greenhouse gas emissions, which could help pinpoint where limiting emissions would be most helpful and illuminate specific methods for doing so. Continue reading

The ‘Carbon Market Bazaar’: Future Windfall for Producers or Just Hot Air?

By David I. Gustafson, Adjunct Research Faculty at Washington State University

This article is part of a series, Climate Friendly Fruit & Veggies, highlighting work from the Fruit & Vegetable Supply Chains: Climate Adaptation & Mitigation Opportunities (F&V CAMO) project, a collaborative research study co-led by investigators at the University of Florida and the Agriculture & Food Systems Institute. Other collaborators include researchers at the University of Arkansas, University of Illinois, the International Food Policy Research Institute, the World Agricultural Economic and Environmental Services, and Washington State University. This project seeks to identify and test climate adaptation and mitigation strategies in fruit and vegetable supply chains.

 

Sellers along a high-ceiling building show their wares, including rugs, bags, and many other items

Emerging carbon markets for U.S. agriculture today may be compared to a Middle Eastern bazaar: hints of danger and mystery. But there might be a genuine bargain that could be the perfect and profitable fit for your operation. Photo: Blondinrikard Froberg under CC BY 2.0.

I’m a fan of action movies, where a Middle Eastern bazaar is a popular place for high-speed chases. Even without the careening bullets and motorcycles, there are hints of danger and mystery amidst the clamor and unknown languages filling the air. You barter over the selling price of exotic objects that cannot be found anywhere else. Am I about to pay ten times what something is really worth? So it is with the emerging carbon market and U.S. agriculture today. Major companies like Bayer and upstarts like Indigo Ag and Nori are now offering to purchase carbon credits directly from producers for the adoption of new practices they agree to begin employing on their fields. But what is this worth to producers? Continue reading

Here’s the Dirt on Carbon Sequestration Potential in Cropland Soils

By Nicole Bell, Center for Sustaining Agriculture and Natural Resources, Washington State University

Aerial view of green and dry center pivot circles with the Columbia River in the background

Soils with carbon sequestration potential can include irrigated croplands in the Columbia River Basin. Photo: Doug Wilson/USDA ARS

In this era with record-setting temperatures multiple years in a row, scientists are looking for methods to sequester carbon to slow the process of climate change. Agriculture plays a key role in not just the global economy, but also the global carbon cycle: cropland soils have the potential to be either sinks or sources of greenhouse gases, notably carbon dioxide. The conversion of native ecosystems to cropland agriculture has resulted in enormous carbon losses, estimated to be between 20-70% of the original carbon stored in native soils in the US. The Pacific Northwest is an agricultural powerhouse: in 2017, Washington, Idaho, and Oregon produced $22 billion in agricultural production on over 42 million acres. That’s a lot of soil. I recently read a white paper by Georgine Yorgey and colleagues at Washington State University titled “Carbon sequestration potential in cropland soils in the inland Pacific Northwest: Knowledge and gaps,” that summarizes research on carbon sequestration in the inland Northwest. It turns out that it is not a one-size-fits-all answer: the potential of certain croplands to either release or sequester carbon depends on climate, the cropping system, the soil type, and other factors. Fortunately, though, some soils do have great carbon sequestration potential. Continue reading

How Do Grocery and Meal Kit Deliveries Impact the Carbon Footprint of Our Food?

By Nicole Bell, Center for Sustaining Agriculture and Natural Resources, Washington State University

This article is part of a series highlighting work from the Fruit & Vegetable Supply Chains: Climate Adaptation & Mitigation Opportunities (F&V CAMO) project, a collaborative research study co-led by investigators at the University of Florida and the Agriculture & Food Systems Institute. Other collaborators include researchers at the University of Arkansas, University of Illinois, the International Food Policy Research Institute, the World Agricultural Economic and Environmental Services, and Washington State University. This project seeks to identify and test climate adaptation and mitigation strategies in fruit and vegetable supply chains.

 

Open box showing small packets of wrapped foods, with the meal kit label

HelloFresh home delivery meal services individually package ingredients for a 2-4 serving meal. Photo: Flickr user wuestenigel under CC BY 2.0.

I explored opportunities to reduce environmental impact related to food preparation and food waste in previous AgClimate.net articles. However, transportation in the food supply chain is a significant contributor to carbon emissions: all the transportation and miles in between the farm and your plate are part of the journey of fruits, vegetables, and all of your favorite foods. Those food miles and methods of transportation look different today than they did several decades ago. The “last mile” that your food travels through before it lands at your door, otherwise known as the stage from the processor or retailer to the consumer’s hands, is changing too, and it has the potential to be a great opportunity for greenhouse gas emissions reduction. Americans are spending 100 billion dollars a year on online groceries alone. The home delivery meal kit industry is valued at 1.5 billion dollars in the United States and is experiencing a growth rate of 25 percent annually (Heard et al.). While 23 percent of Americans were buying their groceries online in 2016, projections indicate that up to 70 percent of consumers will make the switch by 2024, partially due to the rise in home deliveries throughout the COVID-19 pandemic (Food Marketing Institute). What do all of these at-home deliveries mean for the environment? How are our decisions on the manner in which our food arrives at our dinner table impacting the so-called “last mile” emissions? Continue reading