Category Archives: Carbon Sequestration

Boutique Biochars: Exploring Engineering Strategies to Increase Phosphate Adsorption

By Karen Hills

This is part of a series highlighting work by Washington State University (WSU) researchers through the Waste to Fuels Technology Partnership between the Department of Ecology and WSU during the 2017-2019 biennium.

Researcher in lab.

Figure 1. Michael Ayiania is a Postdoctoral Researcher working on approaches to engineering biochars at Washington State University. Photo: R. Esquivel-Garcia.

Biochar is produced by pyrolysis of woody (technically, lignocellulosic) materials. By controlling the conditions under which it is produced, researchers can engineer biochar to be more effective for particular purposes. In previous articles, I explored work looking at the potential for biochar to draw down atmospheric carbon dioxide and increase water holding capacity in soils. Michael Aniayia (Figure 1) and his colleagues in the lab of Dr. Manuel Garcia-Perez at Washington State University, engineered biochar for a specific purpose – adsorbing phosphate, a nutrient that, because it is also common in wastewater and manure, can pollute waterways. Aniayia’s objective was to evaluate strategies for producing biochar in order to improve its ability to remove phosphate. Continue reading

Check it Out: Can Biochar Be Used for Carbon Dioxide Drawdown in Washington State?

By Karen Hills

Bag full of biochar, a black gravelly material

Figure 1. Biochar has the potential to improve agricultural soils and sequester carbon. Source: USDAgov, licensed under CC PDM 1.0.

This is part of a series highlighting work by Washington State University (WSU) researchers through the Waste to Fuels Technology Partnership between the Department of Ecology and WSU during the 2017-2019 biennium.

In a recent study, Jim Amonette at the Pacific Northwest National Laboratory and Washington State University Center for Sustaining Agriculture and Natural Resources developed an improved method to estimate the technical potential for biochar (Figure 1)—made from forestry residues and waste wood (Figure 2) and applied to agricultural soils in Washington State—to store carbon, drawing down atmospheric carbon (C) and contributing to mitigating climate change. Amonette selected twenty-six counties in Washington State for application of this improved method (Figure 3). For each county, Amonette developed seven biomass feedstock and biochar process scenarios including one for waste wood harvested from municipal solid waste alone, and six for waste wood combined with forestry residues from timber harvesting operations. The research generated results for each of the 26 counties. Continue reading

Sequestering Carbon in Cross-Laminated Timber

By Chris Schnepf

Panel of five layers of boards glued together perpendicular to each other.

Cross-laminated timber panels are made by gluing together three or more layers of boards perpendicular to each other. Photo: Chris Schnepf.

Most of the articles on AgClimate.net focus on adaptation; that is, how we manage fields, forests, and rangelands to adapt to anticipated changes in climate. But there is another side to dealing with climate change—how do we reduce the amount of carbon dioxide in the atmosphere? These efforts are collectively referred to as “mitigation”.

Most of our mitigation focus has been on practices to reduce emissions from cars, tractors, planes, manufacturing, livestock, etc… anything that puts greenhouse gases into the atmosphere. But another part of the mitigation discussion focuses on techniques to place carbon where it can be stored long term and kept out of the atmosphere. In forestry and agriculture there is a lot of research underway on practices that sequester more carbon, from changing agricultural practices, using biochar as a soil amendment in agriculture, to managing forests in ways that retain more carbon, within fire safety limitations.

One of the unique dimensions of carbon sequestration in forestry is how materials generated in forest management are used. Continue reading

Check it out: New Resource on Cropland Soils’ Capacity to Store Carbon Through Improved Management

By Georgine Yorgey

Field of recently ploughed soil

The question “How much additional carbon could cropland soils store through improved management?” led to a new resource being developed. Photo: Leslie Michael.

When you work at a land grant university, people sometimes reach out to you with questions.  I love this aspect of my job, as it often gives me a chance to bridge the divide between research and the real world.  In 2019, one of the questions I got most often was “How much additional carbon could cropland soils store through improved management?”

Over the years, we had already worked to gather the available evidence from across the Pacific Northwest region and help managers interpret that evidence.  But these questions provided us an excuse to re-visit the question. Working with colleagues from Washington State University’s Center for Sustaining Agriculture and Natural Resources and the Department of Biological Systems Engineering, we prepared a white paper summarizing the existing experimental and modeling evidence relating to the carbon sequestration potential of cropland soils in the Pacific Northwest. Continue reading