Category Archives: Carbon & Soil Organic Matter

How will Climate Change Affect the Use of Fallow in Cropping Systems in Our Region?

By Karen Hills

In non-irrigated areas that are too dry to support annual cropping, fallow (the practice of leaving land unplanted) preserves soil moisture for future crops. However, annual fallow combined with conventional tillage has resulted in a net decrease in soil carbon over time in our region, with negative impacts to soil health across large areas. And even when tillage is eliminated, it is very difficult to maintain soil carbon over time in a wheat-fallow system.  For this reason, the impact of climate change on the frequency of fallow in crop rotations has important future implications both for soil health and for opportunities for carbon sequestration.

Two papers published last year by Kaur et al. and Karimi et al. use modeling to project the impacts of climate change on dryland cropping systems. Continue reading

Calculating Climate Benefits for Climate Smart Farms

By Georgine Yorgey

Farmer and long-time CSANR advisory committee member, Dale Gies. Photo: Sylvia Kantor.

What are the climate impacts of a given farm practice?  While we know lots of strategies for reducing greenhouse gas emissions on farms, quantifying that impact can be difficult.  However, there is at least one farm in our region – one that uses some pretty neat practices – for which scientists have attempted to answer that question.  And the farmer just happens to be a long-time member of the Center for Sustaining Agriculture and Natural Resources’ advisory committee, Dale Gies. Continue reading

Turning Urban Wood Waste into Biochar

By Karen Hills

Biochar as a soil amendment has been the subject of much attention in recent years because of its ability to sequester carbon and to improve aggregation, water holding capacity, and organic matter content of soil amended with it (Lehmann, 2007; Marris, 2006). A recent post discussed what’s needed to economically produce forest to farm biochar. In contrast, researchers at Washington State University are investigating what we could call waste to farm biochar. Waste to farm biochar, if deployed on a larger scale, could offer a two-part benefit – removal of wood from the municipal solid waste stream and creation of a valuable product from this wood. In recent work, researchers are looking at two possible wastes that could be made into biochar: wood-based fractions of municipal solid waste and the large woody material remaining after compost production—referred to as “compost overs.”

Figure 1: Images of the woody biomass sources used to create biochar for this project, including compost overs and wood-based products from municipal solid waste. (source: WTFT 2015-2017 report; photo credit: M. Ayiania)

Continue reading

OneNOAA CSSR series

Beginning Thursday, July 12 at 9:00 am Pacific Standard Time – and occurring weekly at that time through Tuesday, August 28 – the OneNOAA seminar series will be hosting an 8-part suite of talks on different aspects of the National Climate Assessment 4 Volume I – the Climate Science Special Report.  This is a fantastic opportunity to learn about the latest climate science from some of the nation’s most eminent scientists!

  • Thurs, July 12: Climate Science: What’s New? – Katharine Hayhoe (Texas Tech University)
  • Thurs, July 19: Detection and Attribution of Climate Change from the CSSR – U.S. Perspective – Tom Knutson (NOAA-GFDL)
  • Thurs, July 26: Droughts, Floods, and Wildfire – Michael Wehner (DOE-LBNL)
  • Thurs, Aug 2: Climate Potential Surprises – Compound Extremes and Tipping Elements – Radley Horton (Columbia University / Lamont-Doherty Earth Observatory)
  • Thurs, Aug 9: Climate Long-Term Climate Mitigation Perspectives and the 2°C Objective – Ben DeAngelo (NOAA)
  • Thurs, Aug 16: The Causes and Consequences of a Rapidly Changing Arctic – Patrick Taylor (NASA-Langley Research Center)
  • Thurs, Aug 23: Climate Tidings of the Tides – Billy Sweet (NOAA)
  • Tues, Aug 28: The Fourth U.S. National Climate Assessment: An Overview of Volume 1 – Don Wuebbles (University of Illinois)

Forest to Farm Biochar – What will it take?

By Laurie Houston

Biochar made from woody biomass. Photo: Oregon Department of Forestry under CC BY 2.0.

My colleagues kicked off a discussion on biochar with their recent articles. Biochar can potentially be a win for soil health, for carbon sequestration in soils, and for fire risk reduction in forests. Kristin Trippe talked about the benefits of biochar as soil amendments in agricultural soils, and a tool to help producers choose biochar products. Chris Schnepf and Darrell McAvoy discussed the benefits and challenges of using forestry slash to produce biochar, and how mobile kilns can facilitate that. So, if biochar has all these benefits why aren’t all farmers spreading biochar on their fields? And why isn’t all the biomass from thinning being processed into biochar? Continue reading

Biochar and Forestry

By Chris Schnepf, University of Idaho, and

Darren McAvoy, Utah State University

Biochar is being used in a variety of agricultural and home and garden applications. Photo: C. Schnepf.

Biochar has many possible agricultural benefits. Given the large role that fire plays in western forests, biochar has likely also already played a significant role in Northwest forests, as evidenced by the charcoal commonly found on top of or buried in our forest soils. Biochar shows promise in providing additional benefits in restoring heavily disturbed forest sites, such as forest roads, skid trails, and landings. For more information, see a chapter in a recent biochar book detailing the current state of North American forest biochar research.

Most of the enthusiasm around biochar in the forestry community, however, is related to using forest management residues to create biochar and useable fuels, such as bio-oil and syngas. Continue reading

Biochar: what can it do for your soil?

By Kristin Trippe, USDA Agricultural Research Service, Forage Seed and Cereal Research Unit

Farmers across the globe are grappling with the challenges of a changing climate. In the Pacific Northwest, loss of snow pack has diminished the availability of water resources, causing increased drought stress (see this article, for example). Our program is focused on biochar, a rather non-descript product that can help farmers both sequester carbon and prolong the availability of soil moisture in their agricultural soils to address drought stress.

Biological Science Technicians Sarah Light (left) and Stephanie Chiu (right) collect soil cores from soil amended with biochar to determine if biochar can help prevent drought. Photo: Claire Phillips, USDA ARS FSCRU.

Continue reading

New Ideas for Improving the Resilience of Semi-Arid Systems

By Georgine Yorgey and Karen Hills,

Swathed cover crop that will be fed to cattle in the field, Nez Perce, ID. By Darrell Kilgore

Across the dryland areas of the inland Pacific Northwest, soil erosion and the use of near monocultures of wheat have long been serious sustainability challenges, ones that we have been working on for decades, including over the last seven years through regional collaborations. Reducing or eliminating tillage has been one important strategy for reducing erosion across the region in recent decades.  Improving diversity by including crops such as canola, peas, chickpea and quinoa in rotations is another approach, but across the inland Pacific Northwest from 2007-2014, 53% of dryland crop acreage was used for winter or spring wheat, while an additional 31% was fallow (meaning that to preserve moisture for the following crop, no crop was grown) (Kirby, E. et al., 2017). Continue reading

Addressing Climate Change and the Agricultural Economy from a Market Driven Perspective

by Doug Finkelnburg

In November I participated in a truly innovative summit titled, “Safeguarding Idaho’s Economy in a Changing Climate – Our Water, Our Land, Our Health, Our Future” which brought together a diverse coalition of public and private stakeholders to discuss economic resiliency challenged by our changing climate. This first-of-its kind, for Idaho, summit occurred simultaneously in Boise, Moscow, Ashton and Pocatello, ID with keynote speakers in Boise streamed to the remote locations. Keynote presentations were followed by facilitated workshops at each viewing site. The goals of this conference were to share what efforts were underway across multiple sectors of Idaho’s economy to address climate change, explore economic opportunities and efficiencies, build new collaborations and provide resources for future projects at all scales. Continue reading

Crop residue–Help or hindrance?

By Karen Hill

Figure 1. Wheat residue on field near Ritzville, Washington, which is part of the drier grain-fallow cropping system. (Photo credit: Darrell Kilgore)

The production of crop residue varies dramatically across the Inland Pacific Northwest, with estimated residue production for winter wheat ranging from roughly 0.9 ton/acre in the drier grain-fallow cropping system (Figure 1) to 8.5 ton/acre in the wetter annual crop system, which has enough precipitation to support cropping every year. Crop residues are often seen as simply something to “manage” so that they don’t impede future plantings or as a byproduct that can be sold to help improve the bottom line. However, while editing chapters for the recently released publication Advances in Dryland Farming in the Inland Pacific Northwest, I was introduced to another way to think about these residues in the chapter in that publication titled “Crop Residue Management.” Continue reading