Category Archives: Carbon & Soil Organic Matter

What do Hurricanes and Soil Carbon Have in Common? The Wisdom of a Multi-Model Ensemble Approach

By David I. Gustafson, Adjunct Research Faculty at Washington State University

Map of the Caribbean with lines curving from the northern coast of S. America across to a widening swath of western western Cuba and southern Florida

Figure 1. Example of “spaghetti model” predictions of potential hurricane paths. Source: Samantha Kendall, “Hurricane Ian Expected to Impact Florida This Week,” posted on September 22, 2022, AllEars.net (https://allears.net/2022/09/22/tropical-weather-system-could-strengthen-to-hurricane-and-threaten-florida-next-week/).

“It’s difficult to make predictions, especially about the future.” So goes an apparently ancient Danish aphorism also mistakenly credited to a wide range of humorists, from Yogi Berra to Mark Twain – and even to a Nobel Laureate, Niels Bohr. Whatever its origins, it is undeniably true. I will discuss an approach for hedging our bets against an uncertain future. I will start with an example where this is already being done, and then we can tackle soil carbon. Continue reading

Cleaning Stormwater with Sequestered Carbon

By Chelsea Mitchell, PhD candidate, Washington State University, Washington Stormwater Center*

 

Runoff entering a bioretention system via a curb cut

Figure 1. Bioretention systems are designed to drain and filter stormwater runoff. Credit Carly Thompson, WSU Puyallup.

Stormwater runoff has become one of the greatest environmental challenges we face in western Washington, a region with heavy rainfall and widespread urbanization. In parts of the landscape dominated by impervious surfaces, such as roads, buildings, and parking lots, rainfall is not able to infiltrate the ground (Figure 1). Instead, the resulting runoff picks up pollutants, causes flooding and changes our waterways. These issues are expected to become more severe with population growth and climate change.

There is a bright spot on the horizon, though. A charcoal-like product known as biochar has potential to address these issues when used in stormwater management. Biochar is formed when biomass is heated under low or no oxygen conditions in a process called pyrolysis. By limiting the oxygen level, you limit combustion and the release of carbon dioxide during biochar production. The resulting material has a stable, carbon-rich structure which resists being degraded for hundreds to thousands of years, keeping the carbon locked in place. Continue reading

The Basics of Carbon Markets and Trends: Something to Keep an Eye On

By Karen Hills, Center for Sustaining Agriculture and Natural Resources, Washington State University

Certain carbon markets could provide a win-win for producers and environmental interests pursuing reduction in emissions. Photo: Scott McLeod under CC BY 2.0.

The ability to store carbon in soils—to sequester carbon—has been receiving increased attention lately, including on AgClimate.net. Recent posts included articles about potential for croplands in the inland Pacific Northwest to sequester carbon and an article on the emerging carbon markets and their relevance for fruit and vegetable producers. Carbon markets offer the promise of monetizing the benefits of practices that add carbon to the soil, and are also good for soil health. If these markets are effective, they would provide a win-win for producers and environmental interests.

Thanks to the wonders of a zoom-friendly world, I recently attended a mini-workshop hosted by the University of Florida and the Institute of Food and Agricultural Extension where we explored carbon markets. Continue reading

ANNOUNCEMENT: SoilCon is Returning in February 2022! Register Today

Logo. SoilCon: Washington Soil Health Week, February 22-23, 2023 #WASoilConThe Washington State Soil Health Initiative, with support from Western Sustainable Agriculture Research and Education, is proud to announce that SoilCon is returning in 2022. This virtual conference will bring research, extension, and production together to discuss soil health parameters at a local, regional, and global scale. The conference will be held February 22nd & 23rd, with sessions from 8:00am-12:00pm PST each day.

Continue reading

Building Better Biochar Breakthroughs: A Roadmap for Biochar Research

By Embrey Bronstad, Center for Sustaining Agriculture and Natural Resources, Washington State University

What is the first thing you think when you hear “Black Gold”? Is it the theme song for the Beverly Hillbillies? A baritone “Texas Tea”? Well, some people think “BIOCHAR!”

Hand holding a handful of dark, soil-like substance

A climate and farming boon: Biochar! Photo: Flickr user mavnjess under CC BY-NC 2.0.

Now, if you are reading this article, you probably know what biochar is. You have probably heard about its benefits when integrated with compost or used in dairy lagoons. A clear opportunity exists for the implementation of biochar technology to mitigate climate change through its ability to sequester carbon. Indeed, a recent estimate suggests that implementation of biochar at scale in Washington State could offset between 8 and 19% of the state’s greenhouse gas emissions (Amonette 2021a). Application of biochar to agricultural soils may also help producers adapt to climate change by improving soil water-holding capacity in settings where water resources during the growing season are expected to become scarcer. Also, by enhancing formation of soil organic matter, these amendments would increase soil health and resilience, thereby helping to ensure continued high levels of agricultural production as the climate changes. In addition to these climatological and agricultural benefits, biochar has great potential to address wildfire risk, improve forest health, restore ecosystem services, and revitalize rural economies (Amonette et al., 2021b).

Despite a burgeoning library of research into biochar over the last two decades, there remain significant knowledge gaps, Continue reading

Get out the Map! A Soil Health Roadmap for Washington

By Karen Hills, Center for Sustaining Agriculture and Natural Resources, Washington State University

Two hands holding a handful of dark soil

Maintaining and improving soil health can result in benefits both on- and off-farm. Photo: Chad Kruger.

Soil has been called “the living skin of the Earth.” The effort to maintain the health of this “living skin” in Washington got a boost in 2021 when the State Legislature passed the Washington Soil Health Initiative with a $2.1 million annual allocation (half of which goes to Washington State University). Washington State is just one of many states in the U.S. where interest in soil health has resulted in initiatives focused on maintaining soil health on working lands, but, notably, no other state’s soil health initiative is investing as much into research as Washington’s. Soil health is defined by the USDA NRCS as “…the continued capacity of soil to function as a vital living ecosystem that sustains plants, animals, and humans.” Soil health is often described as a “win-win” with positive outcomes both on-farm and off-farm. For example, on-farm benefits include improved soil tilth, nutrient cycling, water holding capacity, and disease suppression. Off-farm benefits include reduced soil erosion and improved water quality, as well as reducing the impact on our climate, most directly through carbon sequestration.

The win-win nature of soil health allowed the Washington Soil Health Initiative to gain support from commodity groups in Washington as well as environmental organizations. Continue reading

Here’s the Dirt on Carbon Sequestration Potential in Cropland Soils

By Nicole Bell, Center for Sustaining Agriculture and Natural Resources, Washington State University

Aerial view of green and dry center pivot circles with the Columbia River in the background

Soils with carbon sequestration potential can include irrigated croplands in the Columbia River Basin. Photo: Doug Wilson/USDA ARS

In this era with record-setting temperatures multiple years in a row, scientists are looking for methods to sequester carbon to slow the process of climate change. Agriculture plays a key role in not just the global economy, but also the global carbon cycle: cropland soils have the potential to be either sinks or sources of greenhouse gases, notably carbon dioxide. The conversion of native ecosystems to cropland agriculture has resulted in enormous carbon losses, estimated to be between 20-70% of the original carbon stored in native soils in the US. The Pacific Northwest is an agricultural powerhouse: in 2017, Washington, Idaho, and Oregon produced $22 billion in agricultural production on over 42 million acres. That’s a lot of soil. I recently read a white paper by Georgine Yorgey and colleagues at Washington State University titled “Carbon sequestration potential in cropland soils in the inland Pacific Northwest: Knowledge and gaps,” that summarizes research on carbon sequestration in the inland Northwest. It turns out that it is not a one-size-fits-all answer: the potential of certain croplands to either release or sequester carbon depends on climate, the cropping system, the soil type, and other factors. Fortunately, though, some soils do have great carbon sequestration potential. Continue reading

Climate Friendly Farming Policy Considerations for the Inland Pacific Northwest

By Doug Finkelnburg, Area Extension Educator – Dryland Cropping Systems, University of Idaho Extension

Quote: America’s farmers, ranchers, and forest landowners have an important role to play in combating the climate crisis and reducing greenhouse gas emissions, by sequestering carbon in soils, grasses, trees, and other vegetation and sourcing sustainable bioproducts and fuels.”  - President Biden’s Executive Order on  Tackling the Climate Crisis at Home and Abroad

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/27/executive-order-on-tackling-the-climate-crisis-at-home-and-abroad/

Efforts are underway at the federal level to combat climate change on the agriculture front. USDA has just finished a “listening period” to help develop and refine actions they may implement to accomplish this. Just what those actions may be and what effects they may have on the day-to-day operation of Pacific Northwest farmers is an understandable cause of some uncertainty and trepidation.

Farmer and NRCS soil conservationist looking at a shovelful of soil in a harvested wheat field with standing residue

No-till farming near The Dalles, Oregon, a practice to improve soil health to increase water infiltration and retention, that also sequesters carbon. Photo: NRCS/Ron Nichols under CC BY-ND 2.0.

Recently I spoke with a farmers’ coop manager who asked what programs or policies are likely to be put into effect and whether long time direct-seeders would stand to benefit or lose out. Our discussion (summarized and edited) highlights a few important questions: “If the greatest gains in carbon sequestration are going to be made in the most organic matter-depleted fields, how will those who have already stockpiled organic mater to near a maximum point benefit?” and, “Will there need to be a system of soil carbon auditing or compliance enforcement?” and the inevitable big one, “Inland Pacific Northwest agriculture is very different from Midwest agriculture, will these new policies unfairly benefit some farmers over others?” Continue reading

Developing Biochar Markets in the Pacific Northwest

By Embrey Bronstad

This is part of a series highlighting work by Washington State University (WSU) researchers through the Waste to Fuels Technology Partnership between the Department of Ecology and WSU during the 2017-2019 biennium. This partnership advances targeted applied research and extension on emerging technologies for managing residual organic matter.

Biochar has the potential to provide a win-win for climate, soils, and forest health. Previous posts on AgClimate.net have discussed the effects of integrating biochar with composting facilities, engineering biochars for specific applications, and potential for biochar use in Washington to draw down carbon dioxide. The Pacific Northwest is particularly suited for a supporting a thriving biochar industry, both because of the ubiquity of waste woody biomass as a biochar production feedstock and the extensive agricultural acreage that could benefit from biochar application. Many researchers in the region have developed a library of evidence documenting the numerous benefits of biochar use.  So why aren’t more people producing and using it?

To increase adoption of any product, more than just the scientific benefits must be taken into consideration.  Markets have to be developed, which means knowing the minimum selling price at which biochar can be produced and the maximum purchase price potential buyers are willing to pay.  It also helps to know what the optimum application is for maximum return, for example, when are crop yields improved enough to justify the cost of putting biochar on the field?

The structure of the facility (left) and a front loader by a mound of chipped wood

Figure 1. A biomass power plant that has been modified for biochar production uses forest residues from areas of high fire hazard areas as feedstock. Photos: Josiah Hunt.

To this end, researchers from Washington State University sought to evaluate the potential market for biochar in the Pacific Northwest using techno-economic analyses that coupled both biochar production costs and agricultural returns for a number of crops. Continue reading

Municipal Compost Use in Agriculture: A Question of Cost and Value

By Karen Hills

This is part of a series highlighting work by Washington State University (WSU) researchers through the Waste to Fuels Technology Partnership between the Department of Ecology and WSU during the 2017-2019 biennium. This partnership advances targeted applied research and extension on emerging technologies for managing residual organic matter.

 

Pile of organic material surrounded by earth-looking compost piles

Figure 1. Composting organic waste diverts this material from landfills and yields a product that improves soil properties. Photo: DVO, Inc.

Composting rather than landfilling organic waste, such as food waste and yard trimmings, has several benefits from a climate perspective. A recent study in Washington concluded that composting organic waste likely decreases greenhouse gas emissions from organic waste compared to landfilling (Jobson and Khosravi, 2019). Other benefits of composting organic waste include saving space in landfills, and producing a valuable organic product that can improve soil properties when applied to the landscape.

The expansion of municipal composting programs has led to an increased supply of compost in many areas, including around Seattle, Washington. Agriculture could provide an outlet for large volumes of this compost. However, despite the increased supply of municipal compost, the interest from farmers in using it seems to have lagged. I was part of a project team at Washington State University that drilled into this question further, particularly the potential value of compost in agriculture. Continue reading