Category Archives: Agricultural Practices

Deficit Irrigation Can Improve Fruit Quality for Hard Cider Producers

By Sarah Davis, Intern at Washington State University’s Tree Fruit Research and Extension Center and the Center for Sustaining Agriculture and Natural Resources

Apple trees with fruit on the branches, green foliage

Cider apples in mid August under RDI treatment. Photo: Sarah Davis.

Growing up, I remember my grandfather bringing my family fresh Honeycrisp apples from his orchard in the Chelan area, describing the qualities that made them special. As an orchardist, my grandfather always strived to have delicious, high-quality produce coming from his orchards. My grandfather is not alone in this quest; growers across the state are looking for ways to enhance the quality of their crops. As climate change progresses and temperatures rise, fruit quality could be affected: climate change has been linked to delayed fruit ripening, low fruit quality, low fruit yield, sunburn, and more.  Regulated deficit irrigation (RDI) is one possible way to combat some of these impacts. Continue reading

The Climate Commitment Act is Coming. How Will it Impact Washington Agriculture?

Dani Gelardi, Washington State Department of Agriculture

A new mandate

WEED-IT infrared spray equipment being used as a demostration in stubble that has not been tilled in Douglas County.

Agriculture accounts for an estimated 6.7% of the total greenhouse gas emissions in Washington. Could the Climate Commitment Act pose opportunities to help reduce or offset those emissions? Photo: Leslie Michel.

On January 1st, 2023, major portions of the Climate Commitment Act (CCA) will launch in Washington State. This ambitious law is part of Washington’s plan to eliminate or offset all greenhouse gas (GHG) emissions by 2050. The Washington State Department of Ecology estimates that agriculture accounts for 6.7% of the total emissions in Washington. Despite this sizable GHG contribution, agriculture is exempt from CCA mandates, due to existing laws that already regulate this sector. While it remains uncertain how regulations facing the food manufacturing sector may eventually impact agricultural producers, the CCA will not cap emissions from the production of unprocessed livestock and crops. Does this mean these activities will be entirely unaffected? Continue reading

What We Know and Don’t Know to Effectively Breed Potatoes for Future Climates

Q&A with Potato Breeder Dr. Sagar Sathuvalli

By Sonia A. Hall, Center for Sustaining Agriculture and Natural Resources, Washington State University

 

This article is part of a series where we share insights from conversations that I had with public plant breeders across the Pacific Northwest about their breeding programs and how climate change considerations intersect with their work. Through these conversations, I wanted to better understand the complexities of the plant breeders’ world, where there are elements that already provide useful information about adapting to future climates, and where there are questions—about the climate in the future, or the plants’ responses, or production, market, or other factors affecting a particular crops’ future—that intersect or even overshadow questions about how to prepare for future climates.

head shot of person holding an uprooted potato plant

Vidyasagar (Sagar) Sathuvalli, Oregon State University potato breeder, in a test plot at the OSU Hermiston Agricultural Research and Extension Center.

Potato is a high-value, irrigated crop grown across Pacific Northwest states. It is affected by a range of pests and diseases, including many soil-borne pathogens. The need to break the cycle of some of these pathogens is a driver of crop rotation decisions. In my conversation with Dr. Sagar Sathuvalli, Associate Professor, Potato Breeding and Genetics at Oregon State University, it was clear that plant breeding had an important role to play in resistance to a wide range of pests and pathogens. He described a two-fold challenge to breeding for future climates. First, potato breeders don’t yet have good data on how climate change might change the dynamics of different pests and pathogens, and which might become greater threats in the future. And second, breeders must meet high expectations: neither yield nor quality can be compromised in pursuit of tolerance to climate-driven biotic or abiotic stresses. So here is how Dr. Sathuvalli is approaching these issues.

Continue reading

How What We Don’t Know Affects Our Ability to Prepare for Future Climates

Q&A with Aroma Hops Breeder Dr. Shaun Townsend

By Sonia A. Hall, Center for Sustaining Agriculture and Natural Resources, Washington State University

 

This article is part of a series where we share insights from conversations that I had with public plant breeders across the Pacific Northwest about their breeding programs and how climate change considerations intersect with their work. Through these conversations, I wanted to better understand the complexities of the plant breeders’ world, where there are elements that already provide useful information about adapting to future climates, and where there are questions—about the climate in the future, or the plants’ responses, or production, market, or other factors affecting a particular crops’ future—that intersect or even overshadow questions about how to prepare for future climates.

Hop plant with stunted leaves and stems

Hop plant infected by downy mildew, a “tough nut to crack” for breeding tolerance to diseases. Photo: Shaun Townsend.

Maintaining yields under stressful climate-driven conditions is important in Oregon State University’s aroma hop breeding program, as in most breeding programs. However, two other aspects drive the work of Dr. Shaun Townsend, Associate Professor, Crop and Soil Science at Oregon State University. The first is how warmer (and maybe drier) springs could, maybe, help reduce the impacts of downy mildew, a “tough nut to crack” for breeding tolerance to diseases. Before I discuss my second take-away (it is about beer), see what Dr. Townsend had to say about breeding aroma hops for future climates.

  Continue reading

Adapting to Climate Change in the Yakima Basin: Agriculture’s Volatility and Tradeoffs

By Aaron Whittemore, Center for Sustaining Agriculture and Natural Resources, Washington State University

field seen under the arm of a central pivot irrigation system

Fifty percent of the Yakima Basin’s agriculture is irrigated. Photo: Vidar Mathisen, Unsplash.

The Yakima River Basin is a snow-dependent, agriculturally important region in Washington state, leading in production of many commodities and specialty crops. Nearly 50% of agricultural production in the Yakima Basin is irrigated, and is vulnerable to future expected temperature increases and severe droughts. Researchers at Cornell and Washington State Universities, led by Dr. Keyvan Malek, evaluated the impacts of changes in temperature, water availability, and atmospheric carbon dioxide concentrations on irrigated agriculture in this Basin and examined the effectiveness of potential strategies to mitigate the negative effects on crop yields.

Continue reading

Using Timing of Risks and Benefits to Breed Barley for Future Climates

Q&A with Barley Breeder Dr. Patrick Hayes

By Sonia A. Hall, Center for Sustaining Agriculture and Natural Resources, Washington State University

 

This article is part of a series where we share insights from conversations that I had with public plant breeders across the Pacific Northwest about their breeding programs and how climate change considerations intersect with their work. Through these conversations, I wanted to better understand the complexities of the plant breeders’ world, where there are elements that already provide useful information about adapting to future climates, and where there are questions—about the climate in the future, or the plants’ responses, or production, market, or other factors affecting a particular crops’ future—that intersect or even overshadow questions about how to prepare for future climates.

Headshot of Patrick Hayes in front of a green field

Dr. Patrick Hayes, OSU. Photo: Ron Silberstein, Admiral Malting, Alameda CA

Barley, like wheat, can be sown in the fall, overwinter, and grow and mature the next season, or can be planted in the early spring, and have a shorter, quicker growing season. For a variety of reasons, however, spring barley is considered “the good one” for malting and producing beer. Yet as Dr. Patrick Hayes, Oregon State University’s malting barley breeder, works to develop barley varieties that will be grown under future climates, fall barley is key. The timing of growth and the resources it taps can help avoid a variety of issues that will otherwise impact barley yields and quality (whose main indicator is the percent protein in the grain). Read on for Dr. Hayes’s explanation of why fall barley is becoming increasingly attractive.

  Continue reading

To Be or Not to Be – Considerations at the Intersection of Breeding Apples and Climate Change

Q&A with Apple Breeder Dr. Kate Evans

By Sonia A. Hall, Center for Sustaining Agriculture and Natural Resources, Washington State University

 

This article is the first in a series where we share insights from public plant breeders around the Pacific Northwest on their breeding programs and how climate change considerations intersect with their work. These conversations are about understanding the complexities of the plant breeders’ world, where there are elements that already provide useful information about adapting to future climates, and where there are questions—about the climate in the future, or the plants’ responses, or production, market, or other factors affecting a particular crops’ future—that intersect or even overshadow questions about how to prepare for future climates.

 

Headshot of Kate Evans with a leafy background

Dr. Kate Evans, WSU.

I recently had some highly educational and thought-provoking conversations with Kate Evans, Professor of the Department of Horticulture and director of the Pome (apple and pear) Fruit Breeding Program at Washington State University. These conversations broadened my thinking on plant breeding and climate change from a focus on understanding to what extent plant breeders might be considering climate change in their breeding programs, to all the complexity of what plant breeding is about, how it fits into a much broader context of production and management practices that can help growers adapt to a changing climate, and the range of challenges and opportunities that face a crop—in this case apples—and its associated industry as we experience and prepare for the changes our climate will bring. Here’s what Dr. Evans had to say.


Continue reading

Check it out: Tree Fruit Breeders’ Approaches to the Challenges of a Changing Climate

By Sonia A. Hall, Center for Sustaining Agriculture and Natural Resources, Washington State University

Part of an apple tree with bright red apples in the foreground and the green canopy behind

Future climatic conditions could be an increased area of focus for plant breeding programs. Photo: Flickr user LaraS96 under CC BY-NC-ND 2.0.

With my colleagues on the AgClimate.net team we’ve been discussing plant breeding and climate change for a while, and are actually working on some articles about that relating to our Pacific Northwest crops and growing conditions. So I was intrigued to see this article by Leslie Mertz in the Good Fruit Grower magazine titled Breeding for uncertainty. Mertz starts off by saying “Developing a new tree-fruit cultivar is a long process that begins with breeders deciding which specific traits growers will want 15, 20 or even 30 years into the future.” And close to the end she states “Of course, breeding for the future is always difficult, but it has been made much more so with the extent and effects of climate change being unknown.” In between, though, Mertz discusses existing breeding programs that have used expected future climate conditions to select traits to focus on, and are taking on the added challenge of uncertainty about future climates. Check it out.

And stay tuned for some other articles exploring how climate change intersects with plant breeding efforts underway in the Pacific Northwest.

Climate Analogs for Specialty Crops: See the Future Now

By David I. Gustafson, Adjunct Research Faculty at Washington State University

This article is part of a series, Climate Friendly Fruit & Veggies, highlighting work from the Fruit & Vegetable Supply Chains: Climate Adaptation & Mitigation Opportunities (F&V CAMO) project, a collaborative research study co-led by investigators at the University of Florida and the Agriculture & Food Systems Institute. Other collaborators include researchers at the University of Arkansas, University of Illinois, the International Food Policy Research Institute, the World Agricultural Economic and Environmental Services, and Washington State University. This project seeks to identify and test climate adaptation and mitigation strategies in fruit and vegetable supply chains.

 

Photo collage showing a prophet, a crystal ball, a ouija board and a scene from Star Trek

Figure 1. We have always longed to see the future, whether via prophets,
crystal balls, science fiction, or even through the use of Ouija boards.

“It’s tough to make predictions, especially about the future.” So said Yogi Berra, repeating a version of the apparently Danish proverb whose origins have been lost. Nevertheless, as difficult and logically impossible as it might be, humanity has an innate longing to see the future (Figure 1). Ancient kings kept prophets among their advisors. Fortune tellers make a living by gazing into crystal balls. Hasbro sells Ouija boards for $20.99. And among the most popular of today’s entertainment genres is science fiction.  Continue reading

Building Better Biochar Breakthroughs: A Roadmap for Biochar Research

By Embrey Bronstad, Center for Sustaining Agriculture and Natural Resources, Washington State University

What is the first thing you think when you hear “Black Gold”? Is it the theme song for the Beverly Hillbillies? A baritone “Texas Tea”? Well, some people think “BIOCHAR!”

Hand holding a handful of dark, soil-like substance

A climate and farming boon: Biochar! Photo: Flickr user mavnjess under CC BY-NC 2.0.

Now, if you are reading this article, you probably know what biochar is. You have probably heard about its benefits when integrated with compost or used in dairy lagoons. A clear opportunity exists for the implementation of biochar technology to mitigate climate change through its ability to sequester carbon. Indeed, a recent estimate suggests that implementation of biochar at scale in Washington State could offset between 8 and 19% of the state’s greenhouse gas emissions (Amonette 2021a). Application of biochar to agricultural soils may also help producers adapt to climate change by improving soil water-holding capacity in settings where water resources during the growing season are expected to become scarcer. Also, by enhancing formation of soil organic matter, these amendments would increase soil health and resilience, thereby helping to ensure continued high levels of agricultural production as the climate changes. In addition to these climatological and agricultural benefits, biochar has great potential to address wildfire risk, improve forest health, restore ecosystem services, and revitalize rural economies (Amonette et al., 2021b).

Despite a burgeoning library of research into biochar over the last two decades, there remain significant knowledge gaps, Continue reading