Author Archives: sonia.hall

Announcement: Northwest Drought Workshop – July 28 and 30

Panel of four photos, showing a horseman herding cattle, an alpine meadow overlooking a creek, a green field with woodland in the background, and a wheat field with a flowering canola field in the background.

Photos provided by the USDA Northwest Climate Hub.

The USDA Northwest Climate Hub and National Drought Mitigation Center are hosting a Northwest Drought Workshop via three virtual sessions on 28 & 30 July 2020. This event is for aimed at USDA agency staff (NRCS, FSA, RD, RMA, FS, etc.) and Federal Partners, including Soil and Water Conservation Districts, Watershed Councils, Tribes, University Extension, and other State and Federal Agencies.

The objectives of these workshops are to get a better sense of drought and how it’s monitored, impacts of drought and interconnections in Oregon, Washington and Idaho, as well as share information and resources to raise awareness about drought and lead to changes in response to dry conditions in the region.

Intended outcomes include: Increasing drought impact reporting; remaining informed on drought status; developing a summary of information shared for adapting to drought conditions; and identifying participant-driven next steps and needs.

The first session will be held on 28 July from 8 am – 11 am PT. Participants will:

  • Learn about the U.S. Drought Monitor, including how it is made each week
  • Hear from local experts about drought in Oregon, Washington and Idaho
  • Learn how to report drought impacts
  • Discuss how drought affects USDA programs

The second session will be held on 30 July 8 am – 11 am PT. There will be an east-side focused session with a panel discussion and peer-to-peer learning about drought adaptation practices for lands east of the Cascades (Eastern Oregon, eastern Washington and Idaho). Panelists and peer-to-peer learning will include agriculture, forestry, and rangelands.

The third session will be held on 30 July 1 pm – 4 pm PT. There will be a west-side focused session with a panel discussion and peer-to-peer learning about drought adaptation practices for lands west of the Cascades (Western Oregon, Western Washington). Panelists and peer-to-peer learning will include agriculture, forestry, and rangelands.

Register via this link. You are welcome to register for as many of the workshops as you’d like, however, attendance is limited, so sign up as soon as possible to secure a spot.

The Lasting Impacts of Wildfire

Re-posted from Water Current News, WSU Extension

Hillsolope with trees in the foreground, and rockier slopes with a forested patch in the background

The Entiat Experimental Forest 40 years after a wildfire. Photo Marketa McGuire.

In 1970, when a large lightening caused wildfire started in the Entiat Experimental Forest in north-central Washington, researchers had already collected 12 years of baseline data on three watersheds. Weather and streamflow (including quantity, quality, and timing of water discharge) had all been recorded. This provided a unique opportunity to study the long-term effects of post-fire recovery efforts on hydrology.

Decades after the fire occurred, Ryan Niemeyer, an adjunct professor in Washington State University’s Center for Sustaining Agriculture and Natural Resources, along with his colleagues Kevin Bladon and Rick Woodsmith, began examining the long-term impacts the fire had on the hydrologic system. His findings, recently published in the journal Hydrological Processes, reveal that fire can affect annual stream discharge, peak flows, low flows, and evapotranspiration even 40 years after the burn. Continue reading

Are There More Multiyear Snow Droughts in Our Future?

By Adrienne Marshall

Hiker in a high elevation area, with a small lake and ridges with patchy snow in the background

Late May in the Sierra Nevadas in 2015, a low snowpack year that enabled spring recreation in the high country. Photo: Darren Bagnall.

As an environmental scientist, I’ve done plenty of hiking in the western U.S., always with a map, water bottle and list of water sources. In dry areas it’s always smart to ration water until you get to a new source. Sometimes a stream has dried up for the season, or a pond is too scummy to drink from, so your supply has to stretch further than planned. On one memorable hike, I found that a water source was dry. The next one, three miles later, was dry too. And the one after that had a dead bear carcass in it. While one dry water source was tolerable, several in a row created a serious problem.

Something similar is happening to snow resources in the western United States. Scientists have long known that the warming temperatures associated with climate change are diminishing the region’s snowpack, with more precipitation falling as rain, rather than snow. That’s a problem because snowpack is a critical resource, acting as a natural reservoir that stores winter precipitation. Are we likely to face several low snowpack years in a row? Continue reading

A New Method for Measuring Plant Available Water Capacity Helps Document Benefits of Biochar-Soil Mixtures

By Karen Hills

This is part of a series highlighting work by Washington State University (WSU) researchers through the Waste to Fuels Technology Partnership between the Department of Ecology and WSU during the 2017-2019 biennium.

Five panels showing equipment, from small tubes to psychrometers.

Figure 1. Apparatus used to measure plant-available water holding capacities (PAWC) by conventional and centrifuge methods. A) pressure-plate apparatus for conventional field capacity measurements, B) soils in cups on top of pressure membrane, C) dew-point psychrometer for conventional wilting-point measurements, D) assembled centrifuge filter tube showing removable filter top containing soil to right, and E) rack containing large number of assembled and loaded centrifuge tubes. Source: Amonette et al., 2019.

Biochar has potential to draw down atmospheric carbon when applied to agricultural soils (as discussed in my previous article on this topic). There is currently not a robust way for farmers to be directly compensated for the benefits to society such drawdown provides. However, researchers have been exploring other co-benefits of using biochar as a soil amendment. One such co-benefit is biochar’s ability to increase the water-holding capacity of agricultural soils, and thus increase plant productivity in situations where water is limiting. However, documenting this effect has been limited by how time consuming and expensive it is to measure plant-available water-holding capacity (PAWC) by standard methods (See Figure 1 A, B, C). In an effort to alleviate this barrier, Jim Amonette at the Pacific Northwest National Laboratory and Washington State University’s Center for Sustaining Agriculture and Natural Resources led the development of a new, inexpensive, rapid method for measuring PAWC of soil-biochar mixtures (See Figure 1 D, E), based on applying a specific level of water potential to a sample using a centrifuge. The sample is supported by a filter membrane fixed midway in a centrifuge tube, thus allowing drainage into the bottom of the tube to occur. Continue reading

Check it out: New Studies in the Region Discuss Wildfires in the Future and How Fuel Treatments May Affect Them

By Sonia A. Hall

Fire burning up a shrub steppe slope, with a conifer tree in the foreground

The lightning-sparked Carlton Complex Fire in July was the largest in the state’s recorded history, burning 256,108 acres and destroying 322 residences. Photo and caption: Washington Department of Natural Resources, on Flickr, under CC BY-NC-ND 2.0.

Pacific Northwesterners, especially those of us living and breathing in the inland Northwest, expect wildfires every summer. It’s not about if, but about when, where, and how severe they will be, both in forest and rangeland landscapes. As with many other aspects of natural resource management, climate change continues to add a layer of complexity and uncertainty both in terms of the patterns of fire expected in the future, and in terms of the response of land managers. The USDA’s Northwest Climate Hub’s April 2020 newsletter highlighted the findings of two scientific articles that are addressing questions around future patterns in wildfires and what can be done to prepare. Continue reading

How Can Long-Term Water Storage Management Mitigate Problems in an Era of Water Resource Deficits?

Mengqi Zhao, Ph.D. Candidate, Department of Civil and Environmental Engineering, Washington State University

Set of containment structures filled with water, an aquifer recharge area

Figure 1. Managed Aquifer Recharge, like this example for the Merti aquifer shared between Kenya and Somalia, can help provide additional water in periods of water scarcity. The photo is from the Intergovernmental Authority on Development. (IGAD).

The 2015 drought caused more than $700 million in economic losses across Washington State. Even with current water storage management, both in places where rivers, lakes, and reservoirs generally provide sufficient water and in places where aquifers are the most stable water resource across seasons, extreme drought still impacted our economy. While droughts may impact different places with varying intensity, the risk of long-term water scarcity is greater when aquifers provide water today at the expense of tomorrow’s supply. As the region faces population increases and increasing competition for water resources to provide environmental value and economic value, the risk may increase further. So what water management options can help us mitigate the impacts of drought in the future?

In our region, we are experienced in using surface reservoirs as buffers between the naturally variable water cycle and the relatively more consistent agricultural water demand. The less visible buffer underground has often been ignored. Yet interest is growing, as aquifers may also be a useful reservoir over the long term, if managed sustainably. Our research team is evaluating managed aquifer recharge (MAR), an approach that stores water in the aquifer during the snowmelt season, allowing users to pump it for irrigation during periods of water scarcity (Figure 1). We have been asking questions about how to recharge aquifer systems to optimally achieve both short-term usage and long-term water supply sustainability. Imagine that the amount of water recharged into the aquifer becomes your future available MAR entitlement to pump up when needed. The more water that recharges the aquifer, the more effective the MAR will be in mitigating drought impacts. We are interested in answering specific questions, such as ‘What timing of recharge and infiltration area would have been needed for managed aquifer recharge to provide an effective buffer against the 2015 drought?’ or ‘How effective is managed aquifer recharge for maintaining sustainable water supply during single-year drought or even multi-year droughts?’ Continue reading

Check it out: Protecting Water from the Impacts of Wildfire… Are There Other Advantages?

By Sonia A. Hall

Firefighter looking back to a surface fire under a pine canopy, surrounded by smoke.

A recent report describes how wildfire risk reduction projects can have rippling economic effects across a community. Photo: Gila National Forest under CC BY-SA 2.0.

Being involved in FireEarth, a large research project exploring what makes communities more or less vulnerable to the impacts of wildfire and its cascading consequences, I am really interested in the complexity of impacts and, just as important, what communities, agencies, and other organizations can do to reduce their vulnerabilities. It is not unusual for the initial hypothesis associated with these questions to be that wildfire risk reduction projects in the watershed upstream and around a community have costs associated with them, and we need to understand those costs—as well as the targeted risk reduction benefits that such projects provide—to make sound investment decisions. Now recent work published by the US Geological Survey and partners explores other advantages of such projects: Continue reading

An Integrated View of Water Vulnerability Across the Northwest

By Paris Edwards, USDA Northwest Climate Hub

Water systems across the Northwest sustain crops, livestock, ecosystems, people and power production. These highly managed, interconnected networks of rivers, reservoirs, canals, and pipelines are economic mainstays for the region, and play a foundational role in food and energy security and sustaining natural resource livelihoods.

Top photo shows a large city with a snowcapped mountain in the background. The bottom picute shows rolling hills, with stripes of brown earth or green crops, with a town in the middle.

Figure 1. Water vulnerability depends on a combination of hydrology and social resilience. Densely populated subbasins (top photo) face contrasting challenges to sparsely populated and highly agricultural subbasins (bottom photo). Differences may include precipitation variability and dominance of low-elevation snowpack, economic dependence on natural resources, and poverty rates. Photos: Top – Portland, Oregon, Wikipedia user Truflip99 under CC BY-SA 4.0; Bottom – A town in the Palouse, Washington, Lynn Suckow under CC BY-SA 2.0.

However, climate change has begun to challenge water resources by increasing temperatures, decreasing snowpack, and altering the timing and amount of available water (Regonda et al. 2005). Current water management systems are designed around historical norms and trends that are rapidly becoming outdated, due to increasing climate variability and uncertainty about future resources. As a region, we now have to reconsider how best to plan around and adapt to expected change in order to reduce and avoid negative consequences to the overall food-energy-water system and to community well-being. But where is such adaptation planning particularly urgent? We synthesized data from across the Northwest to answer this question. Continue reading

Check it out: Using the Climate Toolbox to Explain This Winter’s Snowpack Dynamics

By Sonia A. Hall

Skier on a slope with deep powder, and trees on either side

Snowpack in the Cascade Mountains contributed to the somewhat unusual patterns we have seen in this winter’s snowpack. Photo: Peter Stevens under CC BY 2.0.

You may have seen announcements or other Check It Out articles we have posted on AgClimate.net that speak about the Climate Toolbox. This online resource is a collection of tools for addressing questions relating to agriculture, climate, fire conditions, and water developed at the University of Idaho. Oriana Chegwidden, a research scientist and PhD student in Civil and Environmental Engineering at the University of Washington, has recently written an article in the Climate CIRCulator that showcases how you might use the wealth of climate data that the Climate Toolbox synthesizes. She describes the somewhat unusual patterns we have seen in this winter’s snowpack, and what we might see through the rest of the season, running through a few of the Climate Toolbox maps as examples. In this way her article both gives detail and depth on this year’s snowpack dynamics, and provides a neat example of how this tool can be used. So check it out!

Check it Out: Can Biochar Be Used for Carbon Dioxide Drawdown in Washington State?

By Karen Hills

Bag full of biochar, a black gravelly material

Figure 1. Biochar has the potential to improve agricultural soils and sequester carbon. Source: USDAgov, licensed under CC PDM 1.0.

This is part of a series highlighting work by Washington State University (WSU) researchers through the Waste to Fuels Technology Partnership between the Department of Ecology and WSU during the 2017-2019 biennium.

In a recent study, Jim Amonette at the Pacific Northwest National Laboratory and Washington State University Center for Sustaining Agriculture and Natural Resources developed an improved method to estimate the technical potential for biochar (Figure 1)—made from forestry residues and waste wood (Figure 2) and applied to agricultural soils in Washington State—to store carbon, drawing down atmospheric carbon (C) and contributing to mitigating climate change. Amonette selected twenty-six counties in Washington State for application of this improved method (Figure 3). For each county, Amonette developed seven biomass feedstock and biochar process scenarios including one for waste wood harvested from municipal solid waste alone, and six for waste wood combined with forestry residues from timber harvesting operations. The research generated results for each of the 26 counties. Continue reading