Author Archives: sonia.hall

How Do Grocery and Meal Kit Deliveries Impact the Carbon Footprint of Our Food?

By Nicole Bell, Center for Sustaining Agriculture and Natural Resources, Washington State University

This article is part of a series highlighting work from the Fruit & Vegetable Supply Chains: Climate Adaptation & Mitigation Opportunities project, a collaborative research study co-led by investigators at the University of Florida and the Agriculture & Food Systems Institute. Other collaborators include researchers at the University of Arkansas, University of Illinois, the International Food Policy Research Institute, the World Agricultural Economic and Environmental Services, and Washington State University. This project seeks to identify and test climate adaptation and mitigation strategies in fruit and vegetable supply chains.

 

Open box showing small packets of wrapped foods, with the meal kit label

HelloFresh home delivery meal services individually package ingredients for a 2-4 serving meal. Photo: Flickr user wuestenigel under CC BY 2.0.

I explored opportunities to reduce environmental impact related to food preparation and food waste in previous AgClimate.net articles. However, transportation in the food supply chain is a significant contributor to carbon emissions: all the transportation and miles in between the farm and your plate are part of the journey of fruits, vegetables, and all of your favorite foods. Those food miles and methods of transportation look different today than they did several decades ago. The “last mile” that your food travels through before it lands at your door, otherwise known as the stage from the processor or retailer to the consumer’s hands, is changing too, and it has the potential to be a great opportunity for greenhouse gas emissions reduction. Americans are spending 100 billion dollars a year on online groceries alone. The home delivery meal kit industry is valued at 1.5 billion dollars in the United States and is experiencing a growth rate of 25 percent annually (Heard et al.). While 23 percent of Americans were buying their groceries online in 2016, projections indicate that up to 70 percent of consumers will make the switch by 2024, partially due to the rise in home deliveries throughout the COVID-19 pandemic (Food Marketing Institute). What do all of these at-home deliveries mean for the environment? How are our decisions on the manner in which our food arrives at our dinner table impacting the so-called “last mile” emissions? Continue reading

Animal Alert: Heat Wave on its Way May Cause Problems for Livestock Producers and Their Animals

By Donald A. Llewellyn, Ph.D., Associate Professor/Livestock Extension Specialist, Washington State University Extension, and

Craig McConnel, DVM, Ph.D., Associated Professor/Veterinary Medicine Extension, Washington State University Extension

Cattle in the shade of two small trees surrounded by open rangeland

Providing shade, in addition to cool, clean water and avoiding stressful handling can help livestock weather heat waves. Photo provided by Don Llewellyn.

A heat wave is expected to engulf much of the Inland Northwest over the next week with daytime temperatures above 100 degrees in many areas.  These temperatures will put livestock and pet well-being at risk.  Commercial producers and youth with animal projects should prepare now for the upcoming heat and dangerous conditions.  Here are a few general suggestions to keep your animals safe, but also keep in mind each of the various species of domesticated animals with have specific needs.

  • Avoid stressful handling of livestock and if necessary only do so in the early morning hours or late in the evening.
  • If animals are in a barn or shed, ensure that they have proper ventilation and air circulation.
  • For animals outside, provide shade if possible.
  • Provide a continuous supply of cool, clean water.

Continue reading

Check it out: Carbon Friendly Meat Consumption Patterns?

By Sonia A. Hall and Chad Kruger

Chicken and beef kebabs on a grill

Since the 1970s, beef consumption in the U.S. has decreased, while chicken consumption has increased. Photo: Flickr user purdman1 under CC BY 2.0.

There is much about economics, especially macro-economics, that I (Sonia) have a hard time understanding. Yet it’s a field that is so important, because there are so many economic factors that affect agricultural production. And though many of his articles are more about the here and now than the future and how climate change may interact with economic factors, I find many of Jayson Lusk’s blog articles interesting and understandable. Dr. Lusk is the Distinguished Professor and Head of the Agricultural Economics Department at Purdue University, and his most recent article directly tackles climate change by integrating information on greenhouse gas emissions from the beef and chicken we consume in the U.S., and provides some rough estimates of how those have changed since the 1970s, as our meat consumption patterns have changed.

It is important to highlight Dr. Lusk’s focus on consumption, because demand for meats is as important to understand as meat production (that is, supply), when exploring greenhouse gas emissions from the industry. Dr. Lusk reached an interesting conclusion (and I quote): “All in all, it seems meat consumption patterns have become much more carbon friendly since the 1970s.” As Dr. Lusk states, that’s not a headline one often sees. So check out Dr. Lusk’s latest blog to read on how he arrived at this conclusion, using existing data and research studies. Because even though there is uncertainty in his estimates, and he didn’t consider all the factors that could lead to variation in these emission numbers, he still found that collectively we’ve made great improvements.

Waste a Lot, Warm a Lot – Reducing Food Waste is Part of Climate-Friendly Eating

By Nicole Bell, Center for Sustaining Agriculture and Natural Resources, Washington State University

This article is part of a series, Climate Friendly Fruit & Veggies, highlighting work from the Fruit & Vegetable Supply Chains: Climate Adaptation & Mitigation Opportunities project, a collaborative research study co-led by investigators at the University of Florida and the Agriculture & Food Systems Institute. Other collaborating institutions include researchers at the University of Arkansas, University of Illinois, the International Food Policy Research Institute, the World Agricultural Economic and Environmental Services, and Washington State University. This project seeks to identify and test climate adaptation and mitigation strategies in fruit and vegetable supply chains.

Potatoes cut to make fries, with a pile of "chips" that don't lend themselves to perfect fries, and can contribute to waste

The food waste occurring close to a consumer’s plate plays an important role in the overall environmental footprint of a given product, such as fresh market potatoes. Photo: Ernesto Andrade under CC BY-ND 2.0.

While many scientists, producers, and consumers recognize the importance of quantifying the carbon footprint of agriculture, most efforts focus on on-farm activities. The journey food takes before it lands on a consumer’s plate is complex and requires looking beyond the farm gates: as it turns out, the consumer’s plate plays an important role in the overall environmental footprint of a given product. In a recent article, we explored insights related to preparation of French fries from a study led by Ranjan Parajuli on the relative impact of different parts of the supply chain (on-farm, processor, retail, and consumer) for fresh and processed potato and tomato products. Here, we examine another aspect of supply chain impacts of potato and tomato products: food waste. The results indicate that waste contributes significantly to greenhouse gas (GHG) emissions.  Continue reading

Save the Date: 2021 Columbia River Basin Long-Term Water Supply & Demand Forecast Workshops

Header with photo of Columbia RiverJoin us to learn about the draft results of the 2021 Columbia River Basin Long-Term Water Supply & Demand Forecast!

The Washington Department of Ecology in conjunction with Washington State University is preparing the 2021 Columbia River Basin Long-Term Supply and Demand Forecast.

As part of the process we’re getting ready to share the report with stakeholders who rely on water supplies in Eastern Washington. Comments on the report will begin June 2 and run through July 2, with online meetings planned for June 8 and June 17.  Today we’re inviting you to put this on your calendars and to pre-register for one of the meetings (see details below).

Issued every five years, the Long-Term Water Supply and Demand Forecast provides a generalized, system-wide assessment of how future environmental and economic conditions are likely to change water supply and demand by the 2040s across Washington’s Columbia River Basin. Changes are evaluated for four spatial layers: the entire Columbia River basin, Eastern Washington’s watersheds, Eastern Washington’s aquifers, and Washington’s Columbia River mainstem.

The Washington Water Research Center at Washington State University leads this effort in close collaboration with Ecology’s Office of Columbia River. The Forecast results inform water supply planning efforts, and help OCR strategically fund water supply projects by improving understanding of where additional water supply is most critical for meeting water needs, now and in the future.

Register at https://ecology.wa.gov/2021Forecast to join us at one of two upcoming virtual meetings to learn about the preliminary Forecast results and comment on the draft report:

  • 2:30-5:30 pm, Tuesday, June 8 
  • 8:30-11:30 am, Thursday, June 17

If you can’t attend a meeting, you will still be able to review the draft report and comment once the draft Forecast is released on June 2. When it is ready, the draft Forecast will be available at https://ecology.wa.gov/2021Forecast. The website will also include links and contact information for commenting.

If you have further questions, please contact Jennifer Stephens at jennifer.stephens@ecy.wa.gov or (509) 575-2396.

Logo for Department of Ecology of State of Washington Visit us on the web and follow our news and social media.

Subscribe or Unsubscribe

Cover Crops, Community and Climate Change

By Avery Lavoie, Fellow at Oakridge Institute for Science and Education, Environmental Protection Agency, and recent University of Idaho graduate.

Group of people in an agricultural field

Cover crops could be one way to help dryland crop producers adapt to climate change by reducing soil erosion, improving soil fertility, and improving moisture holding capacity. Demonstration field trip in Okanogan, WA. Photo: Avery Lavoie.

Across the nation, there is an increased interest in cover crops: those planted during the fallow period or in place of a cash crop to improve soil and water quality and mitigate the impacts of climate change. In the inland Pacific Northwest, dryland crop producers may experience an increase in spring precipitation by 5-15% over the next 40-70 years (Painter, Borrelli, and Steury 2014), warmer temperatures, and drier summers. Although not widely used, cover crops could be one way to help dryland crop producers adapt to climate change by reducing soil erosion and improving moisture holding capacity, as well as improving soil fertility.

Researchers, extension agents, and conservation agencies are collaborating with crop and livestock producers to determine what will best support their livelihoods and sustain the soil and land for future generations (See REACCH and LIT Projects). But will this work address the challenges that are keeping producers from adopting adaptive practices like cover crops? Dr. Chloe Wardropper and I were interested in hearing directly from crop and livestock producers about their perspectives on those challenges and the potential opportunities for increasing cover crop adoption. Continue reading

Out of the Frying Pan and into the Fryer: Climate Mitigation Opportunities for French Fries

 By Nicole Bell, Center for Sustaining Agriculture and Natural Resources, Washington State University

 This article is part of a series, Climate Friendly Fruit & Veggies (see sidebar), highlighting work from the Fruit & Vegetable Supply Chains: Climate Adaptation & Mitigation Opportunities project, a collaborative research study co-led by investigators at the University of Florida and the Agriculture & Food Systems Institute. Other collaborators include researchers at the University of Arkansas, University of Illinois, the International Food Policy Research Institute, the World Agricultural Economic and Environmental Services, and Washington State University. This project seeks to identify and test climate adaptation and mitigation strategies in fruit and vegetable supply chains.

Top: oven dish with frozen french fries laid out. Bottom: a saucepan with fries in bubbling oil.

The way food is prepared presents a significant opportunity to reduce greenhouse gas emissions. Photos: Chris Campbell under CC BY-NC 2.0 (top); Flickr user Joy under CC BY 2.0.

Efforts to quantify the carbon footprint of agriculture are often focused on the greenhouse gas emissions resulting from on-farm activities, mostly from fertilizer production and the energy required for use of farm implements. While you, as a climate change-conscious consumer, may place your attention on the environmental impact of your food before it arrives in your grocery bag, a recent study published in the Science of the Total Environment examined the relative impact of different parts of the supply chain (on-farm, processor, retail, and consumer) for potato and tomato products, both fresh and processed. Study authors from the University of Arkansas, led by Ranjan Parajuli, assert that the way food is prepared presents a significant opportunity to reduce greenhouse gas emissions. If the goal is to reduce the overall environmental foodprint, changing the way potatoes are cooked may make more of a difference than how the potatoes themselves were grown. Continue reading

Ice, Ice…Maybe?

Q&A with Anders Carlson and Aaron Hartz of the Oregon Glaciers Institute

By Paris Edwards

Did you know that the Northwest is the most glacier-rich region in the lower 48? Glaciers throughout the region provide essential cool, late-summer water for irrigation, fish, and for our taps. Their fate under warming climate conditions, however, is shaky. Even though glacial melt water is crucial to ecosystems and economies alike, we know shockingly little about how much water glaciers provide or where it flows.

Two people in snow gear and skis in a snow field, with a snow covered mountain in the background

Anders Carlson (left) and Aaron Hartz (right) are founders of the new Oregon Glaciers Institute. Photo credit: Jason Sotomayor.

Aaron Hartz and Anders Carlson, founders of the new Oregon Glaciers Institute, are friends, scientists, and potentially part mountain goat. Their mission is to document and study the causes of change for Oregon’s poorly understood and undervalued glaciers, by foot and by photo, and to provide projections of each glacier’s future. Both Oregon State University alumni, collectively they bring decades of full-spectrum knowledge and experience that spans professorial expertise, and the hard-won nitty-gritty knowhow that comes from avid exploration of high alpine terrain. I talked to these intrepid scientists and adventurers about what inspired their work and what they are discovering about the current and future health of one of the region’s essential water resources.

Continue reading

How Can New Remote Sensing Technologies Help Evaluate the Effectiveness of Resource Conservation Measures?

By Amanda Stahl and Alexander Fremier, Washington State University

Grassy area with GPS equipment on a tripod in the foreground and trees along a riparian corridor in the background.

Conserving riparian areas means a small footprint can contribute to protecting a county’s Critical Areas and mitigate the effects of climate change. Photo: Amanda Stahl.

Washington State is taking steps to foster environmental stewardship in agriculture using an alternative approach to direct regulatory oversight. Twenty-seven counties in Washington have opted into the Voluntary Stewardship Program (VSP), which requires them to self-assess (with state oversight) whether voluntary management actions are maintaining or enhancing Critical Areas. Critical Areas include wetlands, fish and wildlife habitat conservation areas, critical aquifer recharge areas, frequently flooded areas, and geologically hazardous areas. Most counties cite riparian conservation measures as a strategy to maintain or enhance at least one type of Critical Area. Riparian conservation measures, like planting or allowing natural vegetation to grow, can also address the impacts of climate change, providing shade to cool water in the stream, improving habitat for species stressed by climate change, and possibly helping moderate extremes in moisture availability year-round. Conserving small land areas can thus have a large impact for mitigating the effects of climate change. The question is, how can we quickly determine if these measures are working, and meeting the goals of the VSP? Continue reading

Climate Change in Extension: Elevating and Amplifying Action

Hillslope covered in trees, with fog or smoke in the background, and the title of the conferenceWhat is the current state of affairs and where are we headed with regard to climate change programming in Extension? Discover more by joining “Climate Change in Extension: Elevating and Amplifying Action,” a virtual national action forum hosted by the National Extension Climate Initiative April 19-21, 2021. There is no fee to participate and all are welcome. Below is the agenda and link to register.

Agenda: https://nationalextensionclimateinitiative.net/events/ and below.

Register here: https://forms.gle/XnWZZW6mpdSE5Urd6

Continue reading