Author Archives: sonia.hall

An Integrated View of Water Vulnerability Across the Northwest

By Paris Edwards, USDA Northwest Climate Hub

Water systems across the Northwest sustain crops, livestock, ecosystems, people and power production. These highly managed, interconnected networks of rivers, reservoirs, canals, and pipelines are economic mainstays for the region, and play a foundational role in food and energy security and sustaining natural resource livelihoods.

Top photo shows a large city with a snowcapped mountain in the background. The bottom picute shows rolling hills, with stripes of brown earth or green crops, with a town in the middle.

Figure 1. Water vulnerability depends on a combination of hydrology and social resilience. Densely populated subbasins (top photo) face contrasting challenges to sparsely populated and highly agricultural subbasins (bottom photo). Differences may include precipitation variability and dominance of low-elevation snowpack, economic dependence on natural resources, and poverty rates. Photos: Top – Portland, Oregon, Wikipedia user Truflip99 under CC BY-SA 4.0; Bottom – A town in the Palouse, Washington, Lynn Suckow under CC BY-SA 2.0.

However, climate change has begun to challenge water resources by increasing temperatures, decreasing snowpack, and altering the timing and amount of available water (Regonda et al. 2005). Current water management systems are designed around historical norms and trends that are rapidly becoming outdated, due to increasing climate variability and uncertainty about future resources. As a region, we now have to reconsider how best to plan around and adapt to expected change in order to reduce and avoid negative consequences to the overall food-energy-water system and to community well-being. But where is such adaptation planning particularly urgent? We synthesized data from across the Northwest to answer this question. Continue reading

Check it out: Using the Climate Toolbox to Explain This Winter’s Snowpack Dynamics

By Sonia A. Hall

Skier on a slope with deep powder, and trees on either side

Snowpack in the Cascade Mountains contributed to the somewhat unusual patterns we have seen in this winter’s snowpack. Photo: Peter Stevens under CC BY 2.0.

You may have seen announcements or other Check It Out articles we have posted on AgClimate.net that speak about the Climate Toolbox. This online resource is a collection of tools for addressing questions relating to agriculture, climate, fire conditions, and water developed at the University of Idaho. Oriana Chegwidden, a research scientist and PhD student in Civil and Environmental Engineering at the University of Washington, has recently written an article in the Climate CIRCulator that showcases how you might use the wealth of climate data that the Climate Toolbox synthesizes. She describes the somewhat unusual patterns we have seen in this winter’s snowpack, and what we might see through the rest of the season, running through a few of the Climate Toolbox maps as examples. In this way her article both gives detail and depth on this year’s snowpack dynamics, and provides a neat example of how this tool can be used. So check it out!

Check it Out: Can Biochar Be Used for Carbon Dioxide Drawdown in Washington State?

By Karen Hills

Bag full of biochar, a black gravelly material

Figure 1. Biochar has the potential to improve agricultural soils and sequester carbon. Source: USDAgov, licensed under CC PDM 1.0.

This is part of a series highlighting work by Washington State University (WSU) researchers through the Waste to Fuels Technology Partnership between the Department of Ecology and WSU during the 2017-2019 biennium.

In a recent study, Jim Amonette at the Pacific Northwest National Laboratory and Washington State University Center for Sustaining Agriculture and Natural Resources developed an improved method to estimate the technical potential for biochar (Figure 1)—made from forestry residues and waste wood (Figure 2) and applied to agricultural soils in Washington State—to store carbon, drawing down atmospheric carbon (C) and contributing to mitigating climate change. Amonette selected twenty-six counties in Washington State for application of this improved method (Figure 3). For each county, Amonette developed seven biomass feedstock and biochar process scenarios including one for waste wood harvested from municipal solid waste alone, and six for waste wood combined with forestry residues from timber harvesting operations. The research generated results for each of the 26 counties. Continue reading

Greenhouse Production of Vegetables: Implications for the Region

By Fidel Maureira, Ph.D. Candidate, Department of Biological Systems Engineering, Washington State University

Dense rows of pepper plants in a greenhouse, on either side of a set of rails

Figure 1. Greenhouse production facility for bell peppers. Photo: Fidel Maureira.

Greenhouse agricultural production currently accounts for 1 to 2% of the agricultural production in the Unites States, but is rapidly growing. The value of this greenhouse production has increased 44% in the last years, and the number of operators has gone up by 71%. Large retailers have a significant interest in this technology, given the benefits of consistency in quality, flavor, and production volume, the potential for year-round supply, consumer preferences for local supply, and the perception that greenhouse production can be more sustainable than traditional production, with more efficient use of resources. New, larger, commercial operations tend to be concentrated around bigger cities to satisfy those local needs. This trend is true in other parts of the world as well, including neighboring Canada. What would greenhouses mean in the Pacific Northwest, if they are broadly adopted?

Continue reading

Sequestering Carbon in Cross-Laminated Timber

By Chris Schnepf

Panel of five layers of boards glued together perpendicular to each other.

Cross-laminated timber panels are made by gluing together three or more layers of boards perpendicular to each other. Photo: Chris Schnepf.

Most of the articles on AgClimate.net focus on adaptation; that is, how we manage fields, forests, and rangelands to adapt to anticipated changes in climate. But there is another side to dealing with climate change—how do we reduce the amount of carbon dioxide in the atmosphere? These efforts are collectively referred to as “mitigation”.

Most of our mitigation focus has been on practices to reduce emissions from cars, tractors, planes, manufacturing, livestock, etc… anything that puts greenhouse gases into the atmosphere. But another part of the mitigation discussion focuses on techniques to place carbon where it can be stored long term and kept out of the atmosphere. In forestry and agriculture there is a lot of research underway on practices that sequester more carbon, from changing agricultural practices, using biochar as a soil amendment in agriculture, to managing forests in ways that retain more carbon, within fire safety limitations.

One of the unique dimensions of carbon sequestration in forestry is how materials generated in forest management are used. Continue reading

Check it out: New Resource on Cropland Soils’ Capacity to Store Carbon Through Improved Management

By Georgine Yorgey

Field of recently ploughed soil

The question “How much additional carbon could cropland soils store through improved management?” led to a new resource being developed. Photo: Leslie Michael.

When you work at a land grant university, people sometimes reach out to you with questions.  I love this aspect of my job, as it often gives me a chance to bridge the divide between research and the real world.  In 2019, one of the questions I got most often was “How much additional carbon could cropland soils store through improved management?”

Over the years, we had already worked to gather the available evidence from across the Pacific Northwest region and help managers interpret that evidence.  But these questions provided us an excuse to re-visit the question. Working with colleagues from Washington State University’s Center for Sustaining Agriculture and Natural Resources and the Department of Biological Systems Engineering, we prepared a white paper summarizing the existing experimental and modeling evidence relating to the carbon sequestration potential of cropland soils in the Pacific Northwest. Continue reading

Exploring Whether Washington State Could Become the New California in Vegetable Production

By Fidel Maureira, Ph.D. Candidate, Department of Biological Systems Engineering, Washington State University

Climate variability and change—rising temperatures, more frequent heat waves, drought, less snowpack, pests and diseases, wildfires, and the resulting over-use of resources such as groundwater—are creating critical agricultural production risks for California, the leading vegetable and fruit producing area of the United States. These issues are projected to get worse in the future. In contrast, climate change-related challenges in the Columbia River Basin are projected to be less extreme and there is potential for a more favorable climate for certain agricultural products, providing the Columbia River Basin with relative competitive advantages over California. Can the irrigated areas of Washington State supplement some of the expected losses in vegetable production in California? The answer is not clear yet, but we are exploring the implications of increasing vegetable production in the Basin, using climate change projections and models that quantify how regional hydrology and crops would respond to those climatic changes (Figure 1).

Diagram showing expected changes in vegetable production and certain crops expected in the future, in Washington and California

Figure 1. Vegetable production in California will suffer a reduction in total production because of rising temperatures effects on vegetables and a higher risk of water shortages. In contrast, Washington will show positive conditions in mid-century for growing crops and good supply of water. Can the irrigated areas of Washington State supplement some of the expected losses in vegetable production in California? This could be a beginning of new vegetable production in irrigated areas of Washington. Footnotes refer to references, below.

Continue reading

We Need to Know if Stormwater Runoff in Near-Urban Agricultural Areas Impacts Soil or Plant Health

By Jordan Jobe, Master of Environmental Management,  Washington State University-Puyallup

view of field by a road, with houses and buildings in the far background

The Puyallup Watershed in Washington State has dozens of family farms pinned between townhomes, traffic-dense roads, commuter train tracks, and industrial sites. Photo: Jordan Jobe.

As farmland in the Puyallup Watershed increasingly finds itself pinned between townhomes, traffic-dense roads, commuter train tracks, and industrial sites, it seems important to be aware of unintended impacts on agricultural viability. Today, the Puyallup River floodplain is used in a variety of ways, including residential housing, commercial and industrial uses, salmon habitat (including restoration and mitigation sites), and agricultural production. The floodplain has fertile, rich soil and is home to dozens of farms growing mixed vegetable row crops.

The Puyallup Watershed has around 14,000 acres of active agricultural production, including dozens of family farms in these fertile floodplain areas. However, as land prices skyrocket and development occurs, farmers often have to face difficult decisions about what to do with their land. Continue reading

How Global Change May Impact the Food, Energy, and Water Sectors in the Columbia River Basin

By Matt Yourek, Department of Civil and Environmental Engineering, Washington State University

Global-scale changes—economic, sociological, climatological—have important ramifications for local communities. For example, land-use change alters the balance of food, energy, and water resources within a basin. The research group I am part of is interested in understanding the future impact of land-use change in the Columbia River Basin. This requires first understanding how land use is expected to change, and then exploring the impacts of these changes on the different sectors.

Future changes in the Columbia River Basin

Tractor and mower moving away, leaving a row of cut grass

Figure 1. Harvesting switchgrass with disc mower. Photo from Farm-Energy, April 3, 2019 (https://farm-energy.extension.org/switchgrass-panicum-virgatum-for-biofuel-production/).

The Global Change Assessment Model (GCAM) simulates supply and demand of fuel and agro-forestry commodities at the national level under a set of standardized greenhouse gas emission scenarios known as representative concentration pathways (RCPs). In the model, markets in food and fuel determine how land use changes. Biofuel is among the industries expected to benefit from low carbon emission policies (Figure 1). To be meaningful within the Columbia River Basin, the broad-scale changes in land use for biofuels and other crops must be disaggregated to a finer scale. Continue reading

No-Regrets Strategies that Benefit Ranching Operations and Provide Climate Resilience

By Georgine Yorgey

Ranchers already manage multiple risks—including those related to economics, production, the environment, and weather. Climate change represents an added risk, but one that is challenging to manage because impacts are uncertain, variable over space and time, and often perceived as being only of concern in the distant future (Leiserowitz et al. 2011).

Cattle grazing open rangeland, with forested hills and mountains in the background

Cattle grazing is the main productive activity in the high desert and dry forest landscape of the Bear Valley, near Seneca, Oregon, where our most recent resilience case study is focused. Photo: Jack and Teresa Southworth.

However, despite this challenge, there is a growing recognition that the same strategies that make ranches and rangelands more resilient to climate change will also provide other important co-benefits. These include enhanced resilience to current weather-related variability, enhanced ecological functioning, and in at least some cases, enhanced or more sustainable economic performance.

Implementing these “no-regrets” strategies is thus important for enhancing the resilience of rangelands to a wide variety of shocks including, but not limited to, climate change. Continue reading