Author Archives: sonia.hall

Check it out: The arid west is expanding

By Sonia A. Hall

Landscapes west and east of the 100th meridian. Left: Rangeland country in Idaho. Photo: Sonia A. Hall. Right: Soybean crops in Iowa. Photo: Parshotam Lal Tandon, under CC BY-NC-SA 2.0.

The contrast between the arid west—rangelands, wheat, conifer forests, irrigated agriculture—and the Midwest’s Great Plains—corn, soybean, prairies—is well known. There is a somewhat abrupt line separating arid from humid, close to the 100th meridian. That line is now shifting, as climate change affects temperatures, precipitation, and wind patterns that control that arid-to-humid line. Take a look at a recent study from Columbia University on how the line is shifting eastward from the 100th meridian. And you might want to start with the blog article “The 100th Meridian, Where the Great Plains Begin, May Be Shifting.

 

References:

Seager, R., N. Lis, J. Feldman, M. Ting, A.P. Williams, J. Nakamura, H. Liu, and N. Henderson, 2018: Whither the 100th Meridian? The Once and Future Physical and Human Geography of America’s Arid–Humid Divide. Part I: The Story So Far. Earth Interact., 22, 1–22, https://doi.org/10.1175/EI-D-17-0011.1 

Seager, R., J. Feldman, N. Lis, M. Ting, A.P. Williams, J. Nakamura, H. Liu, and N. Henderson, 2018: Whither the 100th Meridian? The Once and Future Physical and Human Geography of America’s Arid–Humid Divide. Part II: The Meridian Moves East. Earth Interact., 22, 1–24, https://doi.org/10.1175/EI-D-17-0012.1 

How will Climate Change Affect the Use of Fallow in Cropping Systems in Our Region?

By Karen Hills

In non-irrigated areas that are too dry to support annual cropping, fallow (the practice of leaving land unplanted) preserves soil moisture for future crops. However, annual fallow combined with conventional tillage has resulted in a net decrease in soil carbon over time in our region, with negative impacts to soil health across large areas. And even when tillage is eliminated, it is very difficult to maintain soil carbon over time in a wheat-fallow system.  For this reason, the impact of climate change on the frequency of fallow in crop rotations has important future implications both for soil health and for opportunities for carbon sequestration.

Two papers published last year by Kaur et al. and Karimi et al. use modeling to project the impacts of climate change on dryland cropping systems. Continue reading

Tree Planting and Provenance Testing in Response to Climate Change

By Chris Schnepf

Many countries enthusiastically plant trees that are not native to their shores. One of the best examples is New Zealand, which has extensive plantations of genetically improved Pinus radiata, a species native to northern California and known here as Monterey pine. If you noticed pine forests that humans, elves, and orcs scurried through in the Lord of the Rings movies (filmed in New Zealand), you were likely looking at planted, non-native trees. Continue reading

Calculating Climate Benefits for Climate Smart Farms

By Georgine Yorgey

Farmer and long-time CSANR advisory committee member, Dale Gies. Photo: Sylvia Kantor.

What are the climate impacts of a given farm practice?  While we know lots of strategies for reducing greenhouse gas emissions on farms, quantifying that impact can be difficult.  However, there is at least one farm in our region – one that uses some pretty neat practices – for which scientists have attempted to answer that question.  And the farmer just happens to be a long-time member of the Center for Sustaining Agriculture and Natural Resources’ advisory committee, Dale Gies. Continue reading

Turning Urban Wood Waste into Biochar

By Karen Hills

Biochar as a soil amendment has been the subject of much attention in recent years because of its ability to sequester carbon and to improve aggregation, water holding capacity, and organic matter content of soil amended with it (Lehmann, 2007; Marris, 2006). A recent post discussed what’s needed to economically produce forest to farm biochar. In contrast, researchers at Washington State University are investigating what we could call waste to farm biochar. Waste to farm biochar, if deployed on a larger scale, could offer a two-part benefit – removal of wood from the municipal solid waste stream and creation of a valuable product from this wood. In recent work, researchers are looking at two possible wastes that could be made into biochar: wood-based fractions of municipal solid waste and the large woody material remaining after compost production—referred to as “compost overs.”

Figure 1: Images of the woody biomass sources used to create biochar for this project, including compost overs and wood-based products from municipal solid waste. (source: WTFT 2015-2017 report; photo credit: M. Ayiania)

Continue reading

What the heck is a snow drought?

by Sonia A. Hall

Remember 2015? That was a snow drought. Since then, researchers at CIRC (Climate Impacts Research Consortium) have been delving into snow droughts. They are part of an effort that recently released “a number of snow drought monitoring tools designed for decision makers and resource managers to monitor, plan for, and cope with snow drought and its impacts.”  Get more details through Christina Stone (NIDIS) and Nathan Gilles’s article in the Climate CIRCulator, or check it out for yourself on the Snow Drought website.

Forest to Farm Biochar – What will it take?

By Laurie Houston

Biochar made from woody biomass. Photo: Oregon Department of Forestry under CC BY 2.0.

My colleagues kicked off a discussion on biochar with their recent articles. Biochar can potentially be a win for soil health, for carbon sequestration in soils, and for fire risk reduction in forests. Kristin Trippe talked about the benefits of biochar as soil amendments in agricultural soils, and a tool to help producers choose biochar products. Chris Schnepf and Darrell McAvoy discussed the benefits and challenges of using forestry slash to produce biochar, and how mobile kilns can facilitate that. So, if biochar has all these benefits why aren’t all farmers spreading biochar on their fields? And why isn’t all the biomass from thinning being processed into biochar? Continue reading

CIRC Releases Final Report for Phase One of Research     

by Sonia A. Hall

Interested in better understanding climate change impacts in the Pacific Northwest? Our colleagues at CIRC (Climate Impacts Research Consortium) have recently released a report on their first seven years of research. Check out Nathan Gilles’s article on this report, that walks you through and highlights the key findings. Read Nathan’s article in the Climate CIRCulator.