Author Archives: sonia.hall

Municipal Compost Use in Agriculture: A Question of Cost and Value

By Karen Hills

This is part of a series highlighting work by Washington State University (WSU) researchers through the Waste to Fuels Technology Partnership between the Department of Ecology and WSU during the 2017-2019 biennium. This partnership advances targeted applied research and extension on emerging technologies for managing residual organic matter.

 

Pile of organic material surrounded by earth-looking compost piles

Figure 1. Composting organic waste diverts this material from landfills and yields a product that improves soil properties. Photo: DVO, Inc.

Composting rather than landfilling organic waste, such as food waste and yard trimmings, has several benefits from a climate perspective. A recent study in Washington concluded that composting organic waste likely decreases greenhouse gas emissions from organic waste compared to landfilling (Jobson and Khosravi, 2019). Other benefits of composting organic waste include saving space in landfills, and producing a valuable organic product that can improve soil properties when applied to the landscape.

The expansion of municipal composting programs has led to an increased supply of compost in many areas, including around Seattle, Washington. Agriculture could provide an outlet for large volumes of this compost. However, despite the increased supply of municipal compost, the interest from farmers in using it seems to have lagged. I was part of a project team at Washington State University that drilled into this question further, particularly the potential value of compost in agriculture. Continue reading

Dry Farming Gains Ground in the Northwest

By Paris Edwards, USDA Northwest Climate Hub and Amy Garrett, Oregon State University Extension

Rows of densely covered vegetable crops, with a row of trees in the background

Dry farming trial at the Oregon State University Oak Creek Center for Urban Horticulture. Photo: Amy Garrett, taken on July 27th, 2020.

In parts of the maritime Pacific Northwest, climate conditions work well for dry farming, a set of soil preparation and management techniques that allow for growing food with little to no supplemental water. Dry farming has a long history of practice in the West, but a recent resurgence in popularity can be linked to water access challenges, drought, and uncertain future climate conditions. Dry farming fruits and vegetables requires a set of techniques that are evolving as the global network and local community of experts continues to expand and innovate together. So how is the reemergence of dry farming in the Northwest unfolding, and what does it have to offer growers and consumers? Continue reading

Rangeland Fire Protection Associations – An Important Tool, Now and in the Future

Emily Jane Davis, Assistant Professor and Extension Specialist, Oregon State University Extension, & Sonia A. Hall, Center for Sustaining Agriculture and Natural Resources, Washington State University

Cheatgrass seedheads in the foreground, mixed with medusahead spikes.

Annual invasive grasses like cheatgrass, here appearing with a typical reddish tint, increase fuel loads and favor bigger fires, especially as the climate changes. Photo: Darrell Kilgore.

Wildfires in rangeland systems across the western United States, including the intermountain Northwest, are not going away. If anything, research and climate change modeling suggest that wildfire activity will continue to increase (Abatzoglou and Kolden 2011), and conditions support expansion of the annual invasive grasses, like cheatgrass, that increase fuel loads and favor bigger fires (Bradley et al. 2016). Yet wildfires are already an issue in these rangelands systems, for ranchers, natural resource managers, and conservationists worried about species like Greater sage grouse. So, tools that are helping make a difference now can become the path forward for addressing these issues in the future as well.

Wildfire impacts cross ownership boundaries, and ranchers are often closest to fires when they start. In the sagebrush steppe landscapes of eastern Oregon and Idaho, growing numbers of ranchers participate in Rangeland Fire Protection Associations (RFPAs) to help minimize these impacts. Continue reading

Check it out: Climate Change Could Enhance Trade-Offs Between Yields and Volatility in Revenue

By Sonia A. Hall

Flowering potato field, with center pivot in the backgorund

Potatoes. An important irrigated crop in Washington State, where planting slower growing varieties could be an adaptation to the impacts of climate change. Photo: Washington State Department of Agriculture under CC BY-NC 2.0.

Our colleague Keyvan Malek has written about his work on irrigation efficiency, exploring the complexities such as return flows, economics of different technologies, and how critical it is to understand the interplay of factors in each particular watershed or basin. Check out his most recent publication, a collaboration between Washington State University and Cornell University, with an eye on the two main aspects of this research study. First, Malek and his colleagues confirm the expected impacts of climate change on irrigated agriculture in the Yakima River Basin: “increasingly severe droughts and temperature driven reductions in growing season significantly reduces expected annual agricultural productivity.”

They then go on to explore how shifting to slower maturing crop varieties, an adaptation to the accelerated growth and maturity due to warmer temperatures, may play out. Continue reading

Community Learning and Social Resilience – An Example of its Importance

By James Ekins, Ph.D., University of Idaho Extension

Citizen science workshop participants learning to collect water quality data in a gentle stream.

IDAH2O citizen scientists learning how to collect good stream data. Participants return home with a more sophisticated understanding of stream processes and are better prepared to explain stream health to neighbors and elected representatives, contributing to community learning. Photo: James Ekins.

Understanding and managing natural resources and agricultural processes are complex tasks, especially in a rapidly changing world. Community resilience has been described as the “existence, development, and engagement of community resources by community members to thrive in an environment characterized by change, uncertainty, unpredictability and surprise (Magis 2010).” One important ingredient for achieving community resilience is community learning, the idea that groups of people build and share norms, values, beliefs, and understandings of the world around them. Overall, the better a community communicates, the greater its ability to develop values and norms that lead to adaptive capacity (the ability of people to engage in activities that influence resilience). Different ways of knowing enable different capacities; communities assemble knowledge from multiple sources, along with local (place-based) cultural adaptations, to adapt to change.

As an Extension educator, I wonder how social learning increases a community’s capacity to react and adapt to socio-ecological change. Are we as non-formal educators making a difference? Are our communities more resilient with long term educational processes like multistakeholder collaborative groups, field tours, and public education workshops? How do they result in a community that is better connected, with a broader base of knowledge and common understanding to draw from? Continue reading

Managing for Washington’s Future: A Bigger Player in Veggie Production

By Fidel Maureira, Department of Biological Systems Engineering, Washington State University

Cartoon of hilly landscape with rows of vegetables.

Cartoon adapted from https://pixabay.com (free for commercial use; no attribution required).

A few months ago I wrote an article that gave a preview of the work we were conducting, to explore whether Washington State could become the new California in vegetable production as the climate warms. Results from this work are now in, and the answer is… yes, the potential is definitely there. Continue reading

Climate Change and Downy Brome in Pacific Northwest Dryland Agriculture

 Q&A with Weed Scientist Dr. Ian C. Burke

Two headshots

Ian Burke (top) and Doug Finkelnburg (bottom).

By Doug Finkelnburg, Area Extension Educator, Cropping Systems, University of Idaho Extension

In the book “Advances in Dryland Farming in the Inland Pacific Northwest”, the common weed downy brome or “cheatgrass” is identified as potentially problematic for wheat producers as the climate changes. Downy brome is projected to head earlier in the season and expand its present occupied acreage. Such changes are happening concurrently to broader herbicide resistances being found in Pacific Northwest downy brome populations, a combination that puts increased pressure on weed managers. Curious how these issues interacted, I asked Dr. Ian Burke, Washington State University Weed Scientist and lead author of the Advances chapter “Integrated weed management” about how climate change and herbicide resistance will affect downy brome management. Continue reading

Announcement: Restoring the Narrative – Wildfires of Eastern Washington

Join WSU Extension Forester Sean Alexander, US Forest Service research scientist Dr. Paul Hessburg, author of the acclaimed TED Talk Living (Dangerously) in the Era of Megafires, and Dept. of Natural Resources wildfire protection specialist Guy Gifford (DNR) to discuss the history of fire on the landscape, how it shaped our forests, what we are doing today to manage these forests, and what landowners on the dry Eastern side of the state can do to protect their homes and resources.

Tuesday, July 21st 6:30 pm

Register Here  (https://bit.ly/2OkWzU7)

Firefighter in an open, meadow-like area, looking towards trees and a fire truck surrounded by smoke, with flames close to the ground in places

A prescribed burn project near Leavenworth, Washington in May 2020. Photo: Sean Alexander

Source Contact

Sean M. Alexander, Extension Forester – NE, Washington State University

Email: sean.alexander@wsu.edu. Phone: (509) 680-0358 (cell).

Boutique Biochars: Exploring Engineering Strategies to Increase Phosphate Adsorption

By Karen Hills

This is part of a series highlighting work by Washington State University (WSU) researchers through the Waste to Fuels Technology Partnership between the Department of Ecology and WSU during the 2017-2019 biennium.

Researcher in lab.

Figure 1. Michael Ayiania is a Postdoctoral Researcher working on approaches to engineering biochars at Washington State University. Photo: R. Esquivel-Garcia.

Biochar is produced by pyrolysis of woody (technically, lignocellulosic) materials. By controlling the conditions under which it is produced, researchers can engineer biochar to be more effective for particular purposes. In previous articles, I explored work looking at the potential for biochar to draw down atmospheric carbon dioxide and increase water holding capacity in soils. Michael Aniayia (Figure 1) and his colleagues in the lab of Dr. Manuel Garcia-Perez at Washington State University, engineered biochar for a specific purpose – adsorbing phosphate, a nutrient that, because it is also common in wastewater and manure, can pollute waterways. Aniayia’s objective was to evaluate strategies for producing biochar in order to improve its ability to remove phosphate. Continue reading

Check it out: Engagement as a Path Towards Greater Resilience to Climate Change

By Sonia A. Hall

Two people on horseback rounding up cattle

Our most recently published case study on resilience to climate change describes Brenda and Tony Richards’ family cow-calf operation in Murphy, Idaho.

Over the last few years at the Center for Sustaining Agriculture and Natural Resources we have developed a range of case studies highlighting individual farmers and ranchers in the Pacific Northwest that are implementing practices or strategies that provide ecological and economic benefits now in addition to increasing resilience to climate change. We’ve discussed some of these case studies in previous AgClimate articles (see those on the use of stripper headers and precision nitrogen). Our most recent series is the Rancher-to-Rancher series, which explores innovative approaches three Pacific Northwest ranchers are using that increase their resilience in the face of a changing climate. Though each case study is specific to the conditions of the particular rancher being profiled, insights and strategies from each case study may be applicable elsewhere.

Check out the most recently published case study, that describes Brenda and Tony Richards’ family cow-calf operation in Murphy, Idaho. Continue reading