Climate Change in Extension: Elevating and Amplifying Action

Hillslope covered in trees, with fog or smoke in the background, and the title of the conferenceWhat is the current state of affairs and where are we headed with regard to climate change programming in Extension? Discover more by joining “Climate Change in Extension: Elevating and Amplifying Action,” a virtual national action forum hosted by the National Extension Climate Initiative April 19-21, 2021. There is no fee to participate and all are welcome. Below is the agenda and link to register.

Agenda: https://nationalextensionclimateinitiative.net/events/ and below.

Register here: https://forms.gle/XnWZZW6mpdSE5Urd6

Continue reading

What Does Climate Change Mean for Flooding in the Columbia River Basin?

By Karen Hills

Aerial view of farms along a river with flood waters in fields and around buildings

Figure 1. The Pacific Northwest was hit by an historic flood in February 1996. Corps dams were put to the test and held back as much of the flood waters as possible, but too much rain fell in the valley below the dam. As a result, many communities in western Oregon felt the impacts of the flood waters. Photo: Portland Corps under CC BY 2.0.

Previous posts on AgClimate.net have focused on research related to anticipated climate change impacts on water availability and timing of available irrigation water in the Columbia River Basin, given the concern with having sufficient water to support the range of uses in the region. But is too little water the only concern? Laura Queen of the Oregon State University Climate Change Research Institute is the author of a recently published paper titled “Ubiquitous increases in flood magnitude in the Columbia River Basin under climate change.” Queen and her colleagues explain how in systems dominated by snowmelt, as is common in the Pacific Northwest, observational studies have shown consistent changes toward earlier spring streamflow and lower summer streamflow. This change has important implications for water users in the region. Less frequently discussed are the anticipated impacts on flooding (Figure 1), which is second only to fire in federal disaster declarations brought about by natural disasters in the Pacific Northwest. Continue reading

Check it out: Some Thoughts on Plant Breeding to Adapt to Climate Change

By Sonia A. Hall

graphic showing 10 commodities, and their value in dollars

The top agricultural commodities in Washington do not include corn. Yet questions being explored in corn can be relevant to these and many other crops produced in the Pacific Northwest. Screenshot from the Washington State Department of Agriculture website, accessed March 8, 2021. https://agr.wa.gov/washington-agriculture

Maize, or corn, may not be the first thing that comes to mind when you think about agriculture in the Pacific Northwest (though 275,000 acres, of corn were harvested in 2020 in Washington, Oregon, and Idaho, according to the US Department of Agriculture QuickStats). However, I was intrigued by a recent article focused on corn in ScienceDaily titled Climate-adapted plant breeding: Improvement of crops with genes from seed banks. The research paper the article discusses is about molecular technologies that allow researchers to scan the entire genome of different corn plants, which then allows them to link the data from field trials to genes that are relevant to specific traits. But what I found more intriguing was the discussion that framed why being able to do this is important. Continue reading

Check it out: Putting Oregon’s September Fires in Past—and Future—Context

By Sonia A. Hall

Roadside Fire Danger sign showing "Extreme" danger

Fire danger was considered extreme on and around Labor Day 2020. Close to the Beachie Fire in Marion County, OR. Photo: Oregon Department of Transportation, under CC BY 2.0.

Most of us probably agree that 2020 was an unprecedented year in many ways. Much of the western U.S. will remember 2020 for, among other things, the extensive fires that burned across many states. One of those states is Oregon, where climatic and weather conditions converged during Labor Day to enable large fires across the western slopes of the Cascades. Check out climatologists John Abatzoglou, David Rupp, and Larry O’Neill’s article titled Climate Enabling Conditions and Drivers of the Western Oregon Wildfires of 2020. They discuss the conditions that enabled these fires, and provide some historical context for their occurrence. Spoiler alert: their concluding paragraph states that “The best science available indicates that the conditions that enable large wildfires and wildfire seasons will become more common as a result of climate change and past and current land management and land use.” Many communities are heeding this information and working towards reducing vulnerabilities and improving resilience, to better deal with future fires. Please share with us and AgClimate.net readers those tools, resources and information you have found useful in such efforts.  You can comment on this post, or contact us via the Ask A Question tab.

A Review of Climate Change Research in the Columbia River Basin: Missing the Mark on Agriculture

By Paris Edwards

Stream through an alpine meadow, with a snowcapped mountain in the background

Headwater streams originate in mountainous areas and add critical snowmelt to summer and early fall stream flows. Slow and steady melt off of winter snowpack provides water during the dry season when crops need it most. Photo by Picasa, Wikimedia Commons under CC BY-SA 3.0.

Our understanding of regional climate change effects today will be used to inform management, policy, and the new scientific endeavors of tomorrow. With this in mind, a team of doctoral students from the Water Resources Department at the University of Idaho in Moscow carried out a systematic review of all peer-reviewed studies through 2016 (550 of them) related to climate change in headwater regions of the Columbia River Basin. The purpose of the review was to explore what aspects of climate change impacts on water availability have been well studied, and where additional research is still needed (Marshall et al. 2020). We focused on mountain headwater regions because these critical water-generating areas are vulnerable to increasingly warm winter temperatures that contribute to snowpack losses and increased variability in the timing and volume of water available for multiple uses. Water availability supports values we care about and communities in our region, including irrigation; the future of irrigated agriculture in the Basin depends on water, and at least 20% of surface supply in the Basin is generated from melted snow. Continue reading

Pathways to Progress in Tackling Stormwater Runoff in Near-Urban Agricultural Areas

By Kevin Hyde, Puget Sound Partnership

Culvert draining into a pool of water with oily slick on the surface

Stormwater pollution impacts many of the things Puget Sound residents hold dear. Photo: Washington State Department of Ecology.

Stormwater runoff, particularly from roadways, is one of the leading sources of water pollution in Puget Sound. Stormwater pollution impacts people and ecosystems in different ways. Many of the things Puget Sound residents hold dear, like swimming along rivers and beaches, harvesting and eating shellfish, and fishing for salmon, are directly affected by stormwater pollution. The Puget Sound Partnership works with many groups to tackle this complex problem, and polluted stormwater runoff is a focus of the Toxics in Fish Implementation Strategy, a recovery plan that aims to reduce the levels and impacts of contaminants on Puget Sound aquatic life.

Jordan Jobe, with Washington State University Extension, points out in a recent article that stormwater pollution also has implications for local food systems and farmers. She highlights the need to better understand the impact of stormwater runoff on agricultural viability in near-urban agricultural areas, where it may impact soil health, or contaminate crops. Continue reading

Developing Biochar Markets in the Pacific Northwest

By Embrey Bronstad

This is part of a series highlighting work by Washington State University (WSU) researchers through the Waste to Fuels Technology Partnership between the Department of Ecology and WSU during the 2017-2019 biennium. This partnership advances targeted applied research and extension on emerging technologies for managing residual organic matter.

Biochar has the potential to provide a win-win for climate, soils, and forest health. Previous posts on AgClimate.net have discussed the effects of integrating biochar with composting facilities, engineering biochars for specific applications, and potential for biochar use in Washington to draw down carbon dioxide. The Pacific Northwest is particularly suited for a supporting a thriving biochar industry, both because of the ubiquity of waste woody biomass as a biochar production feedstock and the extensive agricultural acreage that could benefit from biochar application. Many researchers in the region have developed a library of evidence documenting the numerous benefits of biochar use.  So why aren’t more people producing and using it?

To increase adoption of any product, more than just the scientific benefits must be taken into consideration.  Markets have to be developed, which means knowing the minimum selling price at which biochar can be produced and the maximum purchase price potential buyers are willing to pay.  It also helps to know what the optimum application is for maximum return, for example, when are crop yields improved enough to justify the cost of putting biochar on the field?

The structure of the facility (left) and a front loader by a mound of chipped wood

Figure 1. A biomass power plant that has been modified for biochar production uses forest residues from areas of high fire hazard areas as feedstock. Photos: Josiah Hunt.

To this end, researchers from Washington State University sought to evaluate the potential market for biochar in the Pacific Northwest using techno-economic analyses that coupled both biochar production costs and agricultural returns for a number of crops. Continue reading

Forest infrastructure: Preparing for Future Needs

By Chris Schnepf

Precipitation has a large influence on forests and how they function. Forests, and how they are managed or disturbed, also have huge effects on streams that flow from them and all related stream benefits, from fisheries to irrigated agriculture.

Truck driving through a muddy drivable dip

Drivable dips are an excellent low-maintenance approach to quickly draining runoff from forest roads. Photo: C. Schnepf.

Because high water quality (low temperatures, low amounts of sediment) is such an important value of forest streams, extra care is taken in forest management to maintain that quality. People often presume that timber harvesting in and of itself is the greatest threat to water quality, mentally envisioning sediments eroding from harvested slopes. But generally, you do not get much erosion from the soil surface of a harvested area, unless the soils are intrinsically prone to slumping (those soils may slump regardless of harvesting). Even after a harvest, the tree root systems remain, and soils are further bound to the site by understory vegetation and high levels of organic matter.

The biggest threat to water quality is less the harvested surface than it is the surface of roads and skid trails used to access that timber. Continue reading

ANNOUNCEMENT – SOILCON, Washington’s Soil Health Week

Don’t forget to register for this upcoming event!

SoilCon logoWashington State University’s Soil Health Initiative with sponsorship from Western Sustainable Agriculture Research and Education will bring together soil experts from around the world to discuss soil health. This virtual event will occur during the week of February 8-12, 2021 with sessions from 9:30-11:00 AM and 1:00-2:30 PM (PST) each day.

Our understanding of soil health’s role in agro-ecosystem productivity, sustainability, and product quality is evolving. “SoilCon: Washington Soil Health Week” will bring together worldwide experts on soil health in an engaging virtual setting.

 Topics include:

  • Status of Soil Health in the United States and Washington State
  • Soil Health Indicators
  • Soil Health Specific to Washington’s Production Systems
  • Lessons Learned from Long-term Soil Health Research

These topics will be relevant to producers, consultants, agricultural professionals, University faculty and students, policy makers, conservation districts, and interested members of the general public.

Attendance is free and open to all.

 For more information and to register: https://pheedloop.com/wasoilcon/site/home/

 

 

Check it out: How does the Columbia Basin Fare as the Timing and Volume of Snowmelt Changes?

By Sonia A. Hall

A broad river, with snow covered mountain in the background.

The Columbia River is fed by snowmelt from surrounding mountains. These waters are used for irrigating crops, as well as other uses. Snowmelt patterns are expected to change across the world as the climate continues to warm. Photo: Flickr user jaisril under CC BY-NC-ND 2.0.

It is not always easy to extract regionally-relevant conclusions from global studies, such as the one discussed in the August 2020 CIRCulator article “Irrigated Agriculture, Snowmelt, and Climate Change.” So though many of the irrigation-dependent crops studied are not typical to the Pacific Northwest, this article discusses research that synthesizes key risk factors—whether a basin is currently dependent on snowmelt for irrigation water; how far out of sync water supplies and agricultural demand will become; can a basin realistically find new ways to store water, replacing the snowpack’s storage capacity—into a snowmelt hazard index. Big, global picture: The Columbia River Basin is expected to do better than watersheds to the south and the east, but overall received what the CIRCulator article called “a middling-but-still-worrisome snow hazard scale rating,” putting it, interestingly enough, right “next to the Tigris/Euphrates Basin.” Check out the CIRCulator article for a lot more detail, or, if you have access through a library or subscription, delve into the actual publication in Nature Climate Change.

 

Reference: 

Qin, Y., Abatzoglou, J.T., Siebert, S., Huning, L.S., AghaKouchak, A., Mankin, J.S., Hong, C., Tong, D., Davis, S.J. and Mueller, N.D., 2020. Agricultural risks from changing snowmelt. Nature Climate Change, 10(5), pp.459-465. https://doi.org/10.1038/s41558-020-0746-8