Crop residue–Help or hindrance?

By Karen Hill

Figure 1. Wheat residue on field near Ritzville, Washington, which is part of the drier grain-fallow cropping system. (Photo credit: Darrell Kilgore)

The production of crop residue varies dramatically across the Inland Pacific Northwest, with estimated residue production for winter wheat ranging from roughly 0.9 ton/acre in the drier grain-fallow cropping system (Figure 1) to 8.5 ton/acre in the wetter annual crop system, which has enough precipitation to support cropping every year. Crop residues are often seen as simply something to “manage” so that they don’t impede future plantings or as a byproduct that can be sold to help improve the bottom line. However, while editing chapters for the recently released publication Advances in Dryland Farming in the Inland Pacific Northwest, I was introduced to another way to think about these residues in the chapter in that publication titled “Crop Residue Management.” Continue reading

Real-life agricultural innovation: implications for future preparedness

By: Sonia A. Hall

Both John Aeschliman (left) and Douglas Poole (right) practice no-till, though they farm with very different precipitation regimes. Photo: Alex Garland.

Extension has traditionally involved getting results from researchers to decision-makers in agriculture. Partly because I work on climate change and agriculture, and partly because of the approach my team and the researchers we work with take, extension is, for us, a two-way street. In this article I want to highlight the “other” side of that street: how innovations that producers test out in real life complement research and supports future preparedness.

In preparation for a new project I reviewed case studies and profiles others I work with published as part of the Regional Approaches to Climate Change – Pacific Northwest Agriculture (REACCH-PNA) project, which focused on dryland cereal production in a changing climate. These case studies tell the stories of producers who are implementing practices that break some mold, and that is leading to both interesting results and to benefits that will help them be prepared for future climates. Continue reading

Happy Holidays!

Happy Holidays from the AgClimate.net team!  Catch up on all our posts from 2017 and join us again for an exciting new year in 2018!  Don’t forget to sign up for our newsletter.

Best Wishes from all of us!!

REACCH Webinar Series: Wheat Focused Presentations

By Amy Pendegraft

Articles contained within this post:

  1. The Where and When of Earthworms in Wheat
  2. Research on the Ground: A Survey of Wheat Growers
  3. Climate Change and Winter Wheat Systems: A Case Study from the Pacific Northwest
  4. Pulling Weeds: Timing downy brome control in a changing climate

Continue reading

Stepping back: What have we learned about agriculture and climate change, and where do we go from here?

By Georgine Yorgey

Cattle grazing on an allotment east of the Owyhee River Canyon, Oregon. Used with permission via Flickr from the Bureau of Land Management (CC BY 2.0).

As a number of large climate-and-agriculture projects at our Pacific Northwest universities have come to an end over the last year, we felt it was time to step back and take stock.  Our projects have included dryland wheat farming, anaerobic digestion systems for dairies, and  improving understanding of the interactions among carbon, nitrogen, and water at the regional scale. Now that they are complete, what have we learned? Where should research and extension go from here? In an effort to prioritize and catalyze future regional research and extension efforts, we worked with partners to host a workshop titled “Agriculture in a Changing Climate” (March 9-11, 2016). The event brought together a diverse set of stakeholders—university faculty and students, crop and livestock producers, and individuals representing state, tribal and federal government agencies, industry, nonprofit organizations, and conservation districts—to summarize what we know, identify challenges and gaps, and define priorities for moving forward. Continue reading

Are forest management plans for carbon storage compatible with those for timber harvest and wildlife habitat?

By: Laurie Houston

Old growth forest Mt. Hood Oregon. Researchers at OSU and the U.S. Forest Service Pacific Northwest Research Station have developed a method for assessing tradeoffs among management scenarios with varying emphasis on carbon storage, timber production and habitat for focal wildlife species. Photo Credit: US Forest Service

Since 1960, the U.S. Forest Service has managed national forests for multiple uses including timber production, water supply, recreation, and fish and wildlife.  Added now to that portfolio of management objectives is carbon storage to help mitigate climate change. However managing for multiple uses is extremely complex, because management that favors one use may not always simultaneously favor other uses. Forest management effects on carbon storage generally are known: older trees store more carbon than younger trees; harvesting trees decreases the volume of carbon stored on the landscape; the amount of carbon being stored increases more rapidly in young forest than in older ones. Continue reading

How will climate change affect pests of inland Pacific Northwest cereal systems?

By Karen Hills

Models suggest that climate change in our region will involve an annual temperature increase of 3-4°F by the 2050’s, accompanied by changes in precipitation patterns, including drier summers despite a 5-15% increase in annual precipitation (Kruger et al. 2017). Even with this information, uncertainty still exists about what climate change will mean for agriculture, in general, and for dryland farming systems in our region, in particular. The book Advances in Dryland Farming in the Inland Pacific Northwest, does its part to help managers make decisions despite this uncertainty. Continue reading

Tillage– When Less Is More

By Karen Hills

Figure 1. Two spadesful of soil, showing different levels of soil aggregation, in conventional and reduced tillage. Soil aggregation is one measure of soil quality. (Source: Bista et al. 2017; Photo credit: R. Ghimire)

Though severe erosion can quickly deplete topsoil, rebuilding topsoil is an extremely difficult and slow process, so conserving this resource is imperative. Soil erosion is one of the biggest challenges in agricultural production in the inland Pacific Northwest. Conventional tillage can lead to soil degradation and erosion by wind and water, which can cause concerns for air and water quality, respectively. Conservation tillage—a tillage system which retains residues from the previous crop on the surface, resulting in at least 30% coverage of the soil surface after the planting of the next crop—can dramatically reduce soil erosion. It also offers other benefits, such as improvements in soil quality (Figure 1) and reduced fuel use, allowing it to be widely adopted in some parts of the region. There are many types of conservation tillage used in the Pacific Northwest, which offer different levels of protection of the soil, all the way up to no-till, which results in minimal soil disturbance and maximum retention of soil residue. Continue reading