Hot, Dry Summers Take a Toll on Trees in Western Washington

By Patrick Shults, Washington State University Extension

Tops of two conifer trees, one showing dead branches at the very top, with green canopy below

Western redcedar with a dead top as a result of drought stress. Photo: Patrick Shults, WSU Extension.

The coastal Pacific Northwest is home to some of the best tree-growing conditions in the world.  Fertile soils, plenty of rain, mild temperatures, and short dry seasons allow trees to pack on solid growth each year.  These conditions also give them a significant advantage in protecting themselves from insects and disease with tactics like pitching sap to flush out bark beetles, isolating roots infected with fungus, and compartmentalizing wounds.  However, these defenses are only possible when trees can avoid environmental stressors and, given a changing climate, certain stressors are expected to become more frequent.

Trees in this area have evolved to handle an annual dry season and, generally, mild temperatures during that time ensure they don’t suffer too much stress.  However, in the last decade the coastal Pacific Northwest has experienced unusually stressful conditions.  The summers of 2015, 2017, and 2018, for instance, were very dry and also particularly hot, which worsens moisture stress in trees.  While it is difficult to attribute any given year to climate change, climate modeling suggests hotter summers like these may be a new normal, and a drive down I-5 in western Washington will show many trees have already paid a price. Continue reading

Check it out: Applying outcome-based management to address fire issues on rangelands

By Sonia A. Hall

Cowboy herding cattle at the edge of shrub steppe vegetation

The Bureau of Land Management’s outcome-based grazing management can allow and support using grazing as a tool to address fuel accumulation in rangelands. Photo: Jerry Kencke Photography under CC BY 2.0.

This past Labor Day was an extreme fire day across much of Oregon and Washington, including Douglas and Okanogan Counties in central Washington, close to where I live. Two fires—technically two because the second started “separately” when the first jumped the Columbia River close to Bridgeport—within two days got called out as being part of the top ten largest fires in modern state history (last fifty years) by the local newspaper. These were mostly rangeland fires, though not less extensive, scary, hard to control or impactful because of that. Climate change is an important contributor to the increasing fire activity we are experiencing. So what do we do about managing fires in rangelands? Check out Katie Wollstein’s blog article exploring how the Bureau of Land Management’s outcome-based grazing management can allow and support using grazing as a tool to address fuel accumulation in rangelands. You can also check out Katie’s presentation at the Society for Range Management’s 2020 annual meeting via the Art of Range podcast.

Acting to Prepare for Severe Droughts in the Yakima River Basin

By Mengqi Zhao, recent PhD graduate, Washington State University

Collage of three photos, with plants in greenhouse, a dry pond with no vegetation, and a sprinkler over a crop, close up

Figure 1. Under low water availability conditions, the reliability of irrigation systems can be enhanced through strategies that improve water supply when it is needed or reduce water demand. Examples include greenhouses (left), aquifer recharge (recharge pond, top right), and irrigation technology (bottom right). Photos: Mengqi Zhao (greenhouse and pond) and Kay Ledbetter, Texas A&M AgriLife Research, under CC BY-NC-ND 2.0 (sprinkler).

For more than fifty years, individuals and organizations in the Yakima River Basin (YRB) have been working toward improving water availability, especially for agriculture. The mismatch between rainfall (and snowmelt) timing and the irrigation season has focused these efforts on strategies for increasing water storage. However, farmers frequently encounter insufficient irrigation water supply and large demands from agricultural activities, resulting in prorationing across irrigation districts during every severe drought of record since 1970s. In the Pacific Northwest, projected water scarcity situations under future climate change scenarios could increase to 68% of years in the 2080s if no actions are taken, compared to only 14% of years on average historically (Vano et al., 2010).

Facing such frequent low water availability conditions, what methods can improve the reliability of irrigation systems? How might people’s decisions on adopting those methods affect system vulnerability to droughts? The fundamental solutions to these questions rely on strategies that either improve water supply when it is needed or reduce water demand. Continue reading

Compost Emissions – More Than Just a Matter of Smell

By Karen Hills

This is part of a series highlighting work by Washington State University (WSU) researchers through the Waste to Fuels Technology Partnership between the Department of Ecology and WSU during the 2017-2019 biennium. This partnership advances targeted applied research and extension on emerging technologies for managing residual organic matter.

Large compost pile, with facility in the background

Commercial compost facilities divert organic waste from landfills and create a beneficial soil amendment. Photo: Doug Collins.

Composting organic waste is, in many ways, a win-win scenario. It diverts waste from the landfill, while creating a valuable soil amendment. However, even composting is not without its share of environmental impacts. Large commercial composters know that emissions of smelly compounds can occur and cause unhappy neighbors. But little attention has been paid to less noticeable compounds which could have climate and air quality impacts. But how much is known about the emissions of these compounds from composting operations? Reading a recently published report by Tom Jobson and Neda Khosravi of WSU’s Laboratory for Atmospheric Research helped me to better grasp the state of the science on this question. Continue reading

Forest Insects and Disease – Watching for Weirdness

By Chris Schnepf

Close up of a sapling with sporulating blister rust

Blister rust has to have very high humidity to successfully infect white pine needles. Photo: John Schwandt.

When it comes to climate change, many people focus on raw physics: how much more precipitation or less, the number of frost free days, how many days a year above or below certain temperatures, the length of the fire season, etc. These dimensions are all important to reflect on and study, but it may be that some of the most significant climate change effects could be things we can’t even imagine – what some people might refer to as “global weirding.”  Continue reading

The Need for Flexibility when Managing Grazing

Matthew C. Reeves, U.S. Forest Service, Rocky Mountain Research Station

Grassy, green hillslope with some shrubs scattered around

Forage variability is expected to increase even further in the future, enhancing the need for flexibility in managing grazing on rangelands in the Pacific Northwest. Photo: Darrell Kilgore.

The amount of annual net primary production on rangelands forms the forage base upon which livelihoods and billions of dollars of commerce depend. Land managers and livestock producers in the Pacific Northwest deal with high year-to-year variations in net primary production, which often varies 40% between years due to changes in the amount of precipitation from one year to the next. And in the future, it is widely expected that climate change will lead to further increases in year-to-year variability, creating both challenges and opportunities for ranchers in the region. We therefore need to understand the longer-term changes in how net primary production and resulting forage production will vary, so we can explore new options that provide increased flexibility to ranchers and managers. Continue reading

Municipal Compost Use in Agriculture: A Question of Cost and Value

By Karen Hills

This is part of a series highlighting work by Washington State University (WSU) researchers through the Waste to Fuels Technology Partnership between the Department of Ecology and WSU during the 2017-2019 biennium. This partnership advances targeted applied research and extension on emerging technologies for managing residual organic matter.

 

Pile of organic material surrounded by earth-looking compost piles

Figure 1. Composting organic waste diverts this material from landfills and yields a product that improves soil properties. Photo: DVO, Inc.

Composting rather than landfilling organic waste, such as food waste and yard trimmings, has several benefits from a climate perspective. A recent study in Washington concluded that composting organic waste likely decreases greenhouse gas emissions from organic waste compared to landfilling (Jobson and Khosravi, 2019). Other benefits of composting organic waste include saving space in landfills, and producing a valuable organic product that can improve soil properties when applied to the landscape.

The expansion of municipal composting programs has led to an increased supply of compost in many areas, including around Seattle, Washington. Agriculture could provide an outlet for large volumes of this compost. However, despite the increased supply of municipal compost, the interest from farmers in using it seems to have lagged. I was part of a project team at Washington State University that drilled into this question further, particularly the potential value of compost in agriculture. Continue reading

Dry Farming Gains Ground in the Northwest

By Paris Edwards, USDA Northwest Climate Hub and Amy Garrett, Oregon State University Extension

Rows of densely covered vegetable crops, with a row of trees in the background

Dry farming trial at the Oregon State University Oak Creek Center for Urban Horticulture. Photo: Amy Garrett, taken on July 27th, 2020.

In parts of the maritime Pacific Northwest, climate conditions work well for dry farming, a set of soil preparation and management techniques that allow for growing food with little to no supplemental water. Dry farming has a long history of practice in the West, but a recent resurgence in popularity can be linked to water access challenges, drought, and uncertain future climate conditions. Dry farming fruits and vegetables requires a set of techniques that are evolving as the global network and local community of experts continues to expand and innovate together. So how is the reemergence of dry farming in the Northwest unfolding, and what does it have to offer growers and consumers? Continue reading

Rangeland Fire Protection Associations – An Important Tool, Now and in the Future

Emily Jane Davis, Assistant Professor and Extension Specialist, Oregon State University Extension, & Sonia A. Hall, Center for Sustaining Agriculture and Natural Resources, Washington State University

Cheatgrass seedheads in the foreground, mixed with medusahead spikes.

Annual invasive grasses like cheatgrass, here appearing with a typical reddish tint, increase fuel loads and favor bigger fires, especially as the climate changes. Photo: Darrell Kilgore.

Wildfires in rangeland systems across the western United States, including the intermountain Northwest, are not going away. If anything, research and climate change modeling suggest that wildfire activity will continue to increase (Abatzoglou and Kolden 2011), and conditions support expansion of the annual invasive grasses, like cheatgrass, that increase fuel loads and favor bigger fires (Bradley et al. 2016). Yet wildfires are already an issue in these rangelands systems, for ranchers, natural resource managers, and conservationists worried about species like Greater sage grouse. So, tools that are helping make a difference now can become the path forward for addressing these issues in the future as well.

Wildfire impacts cross ownership boundaries, and ranchers are often closest to fires when they start. In the sagebrush steppe landscapes of eastern Oregon and Idaho, growing numbers of ranchers participate in Rangeland Fire Protection Associations (RFPAs) to help minimize these impacts. Continue reading

Check it out: Climate Change Could Enhance Trade-Offs Between Yields and Volatility in Revenue

By Sonia A. Hall

Flowering potato field, with center pivot in the backgorund

Potatoes. An important irrigated crop in Washington State, where planting slower growing varieties could be an adaptation to the impacts of climate change. Photo: Washington State Department of Agriculture under CC BY-NC 2.0.

Our colleague Keyvan Malek has written about his work on irrigation efficiency, exploring the complexities such as return flows, economics of different technologies, and how critical it is to understand the interplay of factors in each particular watershed or basin. Check out his most recent publication, a collaboration between Washington State University and Cornell University, with an eye on the two main aspects of this research study. First, Malek and his colleagues confirm the expected impacts of climate change on irrigated agriculture in the Yakima River Basin: “increasingly severe droughts and temperature driven reductions in growing season significantly reduces expected annual agricultural productivity.”

They then go on to explore how shifting to slower maturing crop varieties, an adaptation to the accelerated growth and maturity due to warmer temperatures, may play out. Continue reading